CSHV SERIES

Open Loop Current Sensors

DESCRIPTION

The CSHV Series are open loop current sensors that use Hall-effect sensing and patented Honeywell technology to bring the best combination of performance and reliability for current sensing applications.

These products are non-intrusive and electrically isolated from the monitored circuit. This ensures a simple and reliable structure without loss of power to the monitored circuit. They are rated for a primary current measurement range of $\pm 100 \, \text{A}$ to $\pm 1200 \, \text{A}$ DC.

CUSTOMIZATION

The CSHV Series may be customized to best meet specific application needs. Solutions may be tailored to exact specifications for improved time to market, lower total system costs, and enhanced reliability.

Honeywell provides global technical assistance and engineering/service support.

DIFFERENTIATION

- Accuracy: Hall-effect sensing and stable amplification circuitry for improved accuracy over the full operating temperature range.
- Magnetic immunity: Optimized magnetic circuit allows for excellent performance in diverse magnetic environments.
- **Flexible:** Customizable to meet specific application requirements.

VALUE TO CUSTOMERS

- Accurate: Designed to enable precise battery state measurement for improved user experience.
- Ease of use: Magnetic immunity allows for easy integration into different magnetic environments.
- Easy system integration: Analog voltage output may be used by battery management system.

POTENTIAL APPLICATIONS

- Current measurement for battery management systems in electrified vehicles (EV, HEV, PHEV, BEV)
- Current leakage detection and fault isolation in battery charging systems
- Current measurement in energy storage systems
- Fault detection in heavy industrial equipment

FEATURES

- Active open loop current sensing using Hall-effect technology
- High accuracy and low temperature drift
- Operating temperature of -40°C to 125°C [-40°F to 257°F]
- Analog voltage output
- CE certification; REACH and RoHS compliant

PORTFOLIO

Honeywell offers a variety of current sensors for potential use in many applications. To view the entire product portfolio, click here.

OPEN LOOP CURRENT SENSORS CSHV SERIES

TABLE 1. ABSOLUTE MAXIMUM RATINGS							
CHARACTERISTIC	SYMBOL	UNIT	PARAMETER			COMPITION	
CHARACTERISTIC			MIN.	TYP.	MAX.	CONDITION	
Supply voltage max.	$V_{S max.}$	V	_	_	10	_	
Reverse supply voltage max.	$V_{Rmax.}$	V	-0.3	_	_	_	
Output voltage max.	V_{OUTmax}	V	-0.3	_	10	V _{OUT} reverse/forward voltage	
Output current max.	I _{OUT max.}	mΑ	-10	_	10	_	
Ambient storage temperature	_	°C	-40	_	125	_	
Electrostatic discharge voltage	V_{ESD}	kV	_	_	8	_	
RMS voltage for AC isolation test	V_{DWV}	kV	_	_	2.5	50 Hz, 1 min	
Creepage distance	d_{Cp}	mm	4.9	_	_	_	
Clearance	d _{Cl}	mm	4.9	_	_	_	
Comparative tracking index	CTI	_	PLC3	_	_	_	

TABLE 2. OPERATING CHARACTERISTICS IN NOMINAL RANGE (IPN)						
011404075010710		OL UNIT	PARAMETER			
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	CONDITION
Primary current, nominal DC	I _{PN}	А	-I _{PN}	_	I _{PN}	±100 A to ±1200 A
Supply voltage	V_S	V	4.5	5	5.5	_
Ambient operating temperature	_	°C	-40	_	125	_
Output voltage	V_{OUT}	V	$V_{OUT} = \frac{V_S}{5} (G * I_P + V_{OS})$		· V _{os})	$I_{p} = (V_{OUT} * \frac{5}{V_{S}} - V_{OS}) / G$
Sensitivity	G	mV/A	_	2000/I _{PN}	_	T _A = 25°C
Output voltage (at $I_p = 0$)	V_{os}	V	_	2.5	_	_
Current consumption	I _{SUPPLY}	mA	_ _	13 _	_ 16	$T_A = 25^{\circ}C, V_S = 5 V$
Load resistance	R_L	Ohm	10k	_	_	_
Output impedance	R_{out}	Ohm	_	1	10	T _A = 25°C
Ratiometric error	$\epsilon_{_{_{ m r}}}$	%	_	±0.5	_	_
Sensitivity error	$\epsilon_{_{ m g}}$	%	_	±0.6	_	$T_A = 25^{\circ}C, V_S = 5 V$
Electrical offset voltage	$V_{OS,ELECT}$	mV	_	±3	_	$T_A = 25^{\circ}C, V_S = 5 V$
Magnetic offset voltage	$V_{OS,MAG}$	mV	_	±2	_	$T_A = 25^{\circ}C, V_S = 5 V$
Linearity error (% of full scale output)	$\epsilon_{\!\scriptscriptstyle L}$	%	-1	_	1	_
Average temperature coeff of $V_{\rm OS,ELECT}$	_	mV/°C	_	±0.04	_	_
Average temperature coeff of G	_	%/°C	_	±0.02	_	_
Step response time (10% to 90%)	t _r	μs	_	2	6	_
Frequency bandwidth (-3 dB)	BW	kHz	45	_	_	_
Output RMS noise (RMS)	-	mV	_	_	2	-

¹ See Table 5 for catalog listing specifics.

OPEN LOOP CURRENT SENSORS CSHV SERIES

TABLE 3. OVERALL ACCURACY						
I _P (A)		$T_A = 25$ °C, $V_S = 5$ V	7	-40	$^{\circ}$ C < T $_{_{ m A}}$ < 125 $^{\circ}$ C, V $_{ m S}$	= 5 V
-I _{PN}	±20 mV	±1%*I _{PN}	±1.00%	±40 mV	±2%*I _{PN}	±2.00%
0	±7 mV	±0.35%*I _{PN}	±0.35%	±10 mV	±0.5%*I _{PN}	±0.5%
I _{PN}	±20 mV	±1%* _{PN}	±1.00%	±40 mV	±2%*I _{PN}	±2.00%

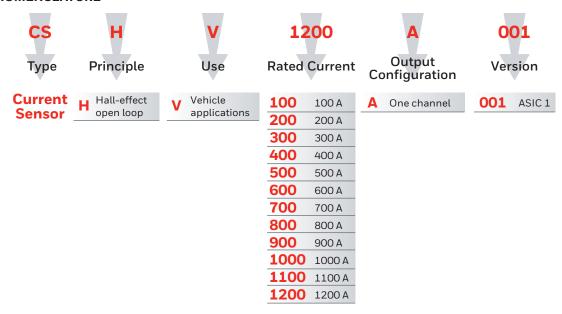
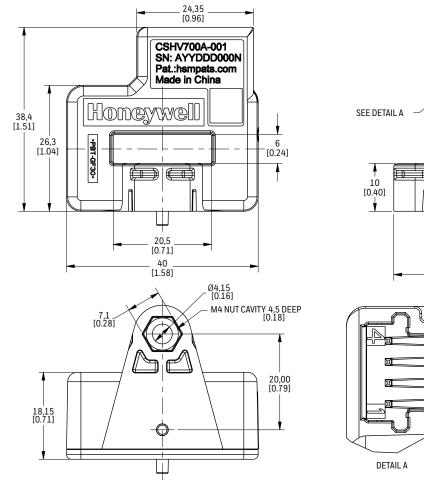
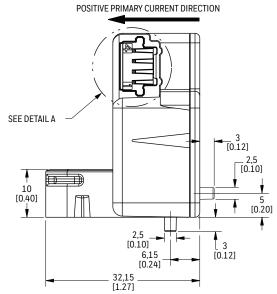

TABLE 4. MECHANICAL CHARACTERISTICS				
CHARACTERISTIC	DESCRIPTION			
Housing material	PBT + GF30%			
Mounting screw	M4, 2,5 N torque max.			
Mating electrical connector	TE MPN 1473672-1			
Weight	58 g			

TABLE 5. ORDER GUIDE							
CATALOGIISTING PANGE		SENSITIVITY	-	FFSET t V _s = 5 V)	ACCURACY (% at V _s = 5 V)		
	(A)	(mV/A at V _s = 5 V)	25°C	-40°C to 85°C	25°C	-40°C to 85°C	
CSHV100A-001	±100	20	±7 mV	±25 mV	±25 mV	±1%	±2%
CSHV200A-001	±200	10		±15 mV	<u></u>	1270	
			25°C	-40°C to 125°C	25°C	-40°C to 125°C	
CSHV300A-001	±300	6.667		±18 mV			
CSHV400A-001	±400	5					
CSHV500A-001	±500	4	+7 mV				
CSHV600A-001	±600	3.333					
CSHV700A-001	±700	2.857			+1%	+2%	
CSHV800A-001	±800	2.5	±1 mv	±10 mV	±170	±2%0	
CSHV900A-001	±900	2.222					
CSHV1000A-001	±1000	2					
CSHV1100A-001	±1100	1.818					
CSHV1200A-001	±1200	1.667					


OPEN LOOP CURRENT SENSORS


CSHV SERIES

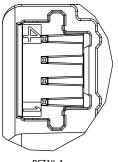

FIGURE 1. NOMENCLATURE

FIGURE 2. DIMENSIONAL DRAWINGS (FOR REFERENCE ONLY: MM/IN)

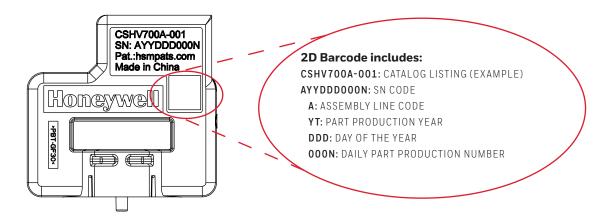
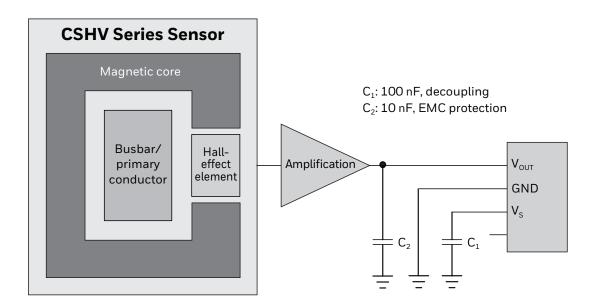


TABLE 6. PINOUT				
PIN	OUTPUT			
1	V_{OUT}			
2	GND			
3	V _s (5 V)			
4	no connection			


Mating connector: TE MPN 1473672-1

OPEN LOOP CURRENT SENSORS CSHV SERIES

FIGURE 3. PART MARKING DETAILS

FIGURE 4. ELECTRICAL DIAGRAM

NOTICE

SENSOR ACCESSIBILITY

• Ensure that the current sensor is installed in a suitable electrical enclosure that is only accessible with the use of special tools.

ADDITIONAL MATERIALS

The following associated literature is available at sps.honeywell.com/ast:

- Product range guide
- Installation drawings

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective.

The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

△ WARNINGPERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

⚠ WARNINGMISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

FOR MORE INFORMATION

Honeywell services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit our website or call:

USA/Canada +1 302 613 4491 Latin America +1 305 805 8188 Europe +44 1344 238258 Japan +81 (0) 3-6730-7152

Singapore +65 6355 2828 Greater China +86 4006396841

Honeywell Advanced Sensing Technologies

830 East Arapaho Road Richardson, TX 75081 sps.honeywell.com/ast

