

FEMA-Produktportfolio

FUNKTIONALE SICHERHEIT GROSS GESCHRIEBEN

Funktionale Sicherheit ist heute ein fester Bestandteil von Entwicklungen in der chemischen Verfahrenstechnik sowie im Maschienen- und Anlagenbau. Mit der Ermittlung sicherheitstechnischer Parameter gemäß IEC61508-2 ist FEMA bestens aufgestellt, um diesen sicherheitstechnischen Anforderungen gerecht zu werden. Gerne stellen wir diese ermittelten Detailwerte für Druckschalter, Thermostate und unsere 2-Leiter Drucktransmitter PTS und PTH zur Verfügung.

Die Vermeidung von Explosionen ist eine primäre Forderung bei der Entwicklung von Anlagen in der chemischen Verfahrunstechnik, dem Anlagenbau, sowie der Verarbeitung und Verbreitung von Öl- und Gas geworden. Gerade dann, wenn man es nicht vermutet, wird ein Funke zum Auslöser. Diesen Auslöser zu vermeiden hat sich FEMA zum Ziel gesetzt und seine Druckschalter und Thermostate nach der Richtlinie 2014/34/EU zugelassen. Mit den Zündschutzarten Ex-d (druckfeste Kaspelung) Ex-e (erhöhte Sicherheit),

Ex-t (Schutz durch Gehäuse), sowie Ex-i (Eigensicherheit) sind wir hervorragend aufgestellt für weitere Herausforderungen in diesen Märkten. Auf Wunsch vieler Kunden haben wir uns entschlossen, unsere Ex-Produkte ebenfalls nach **IECEx** zuzulassen.

Alle SIL2 zertifizierten FEMA Druckschalter, Thermostate und 2-Leiter Transmitter auf einen Blick:

Druckschalter -1 bis 63 bar

 \cdot DCM, DNM, DNS, VCM, VNM, VNS

Differenzdruckschalter 4 mbar bis 16 bar

 \cdot DDCM

Druckwächter und Begrenzer 15 mbar bis 40 bar

 \cdot DWR, DWAM, DWAMV, SDBAM, FD, DGM

Thermostate -20 bis 130 °C

· TAM, TRM, TX

Alle Ex-Druckschalter & Thermostate

 \cdot Ex-DCM, Ex-DDCM, Ex-DGM, Ex-DNM, Ex-DNS, Ex-DWR, Ex-VCM, Ex-VNM, Ex-VNS, Ex-TAM, Ex-TRM, Ex-TX

2-Leiter Drucktransmitter -1 bis 40 bar

· PTS..., PTH...-A2

Der allgemein bekannte Begriff Funktionale Sicherheit ist zum Leitbegriff für die Beherrschung unerwarteter Störfälle in den Bereichen Verkehr, Kraftwerksbau, Chemie und Maschinenbau geworden.

Neben den neu geschaffenen Standards für den Anlagenbau, wurde für die Herstellung von Feldgeräten die Norm IEC 61508-2, Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme geschaffen, welche die Herstellung von geeigneten sicherheitsgerichteten Komponenten für die Chemische Verfahrenstechnik begleitet.

Mit Inkrafttreten der neuen Maschinenrichtlinie RL/2006/42/EG wird in der darunter harmonisierten Norm DIN EN ISO 13849-1, Sicherheit von Maschinen – Sicherheitsbezogene Teile von Steuerungen – Teil 1: Allgemeine Gestaltungsleitsätze, ebenfalls "Funktionale Sicherheit" eingefordert.

FEMA by Honeywell hat für die umfangreichen Bereiche seines Geschäfts in Zusammenarbeit mit dem externen Partner EXIDA, sowohl die normgerechte Entwicklung der 2-Leiter Drucktransmitter PTS- und PTH..-A2 verifizieren lassen, sowie im Rahmen einer FMEDA für alle mechanischen Druckschalter und Thermostate die für die Kalkulation funktionaler Sicherheit erforderlichen Parameter ermittelt.

Sicherheitstechnische Kennzahlen (IEC61508-2 und ISO13849-1)

ТҮРЕ	HFT	DC	PFD (Tproof = 1 year)	PFD (Tproof = 2 years)	PFD (Tproof = 5 years)	MTTFd (years)	SIL- Level	Performance Level (calc.)/ PFH
Druckschalter								
DCM/DNM/DNS (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
DCM/DNM/DNS (max)	0	0%	6,65E-04	9,81E-04	1,93E-03	1426	SIL2	8,01E-08 1/h
DDCM252-6002 (min/max)	0	0%	7,34E-04	1,08E-03	2,13E-03	1282	SIL2	8,90E-08 1/h
DDCM014-16 (min/max)	0	0%	6,53E-04	9,62E-04	1,89E-03	1445	SIL2	7,90E-08 1/h
VCM/VNM/VNS (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
VCM/VNM/VNS (max)	0	0%	6,65E-04	9,81E-04	1,93E-03	1426	SIL2	8,01E-08 1/h
DWR/DGM (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
DWR/DGM (max)	0	0%	6,40E-04	9,44E-04	1,85E-03	1482	SIL2	7,70E-08 1/h
DWAM/SDBAM	0	0%	5,70E-04	8,39E-04	1,65E-03	1654	SIL2	6,90E-08 1/h
DBS-DWAM, FD	0	0%	2,90E-04	4,29E-04	8,42E-04	3261	SIL2	3,50E-08 1/h
DBS-DWR (max)	0	0%	3,62E-04	5,33E-04	1,05E-03	2594	SIL2	4,40E-08 1/h
DBS-DWR (min)	0	0%	2,12E-04	3,13E-04	6,14E-04	4390	SIL2	2,60E-08 1/h
EX-Druckschalter	0							
EX-DNM/-DNS (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
EX-DNM/-DNS (max)	0	0%	6,65E-04	9,81E-04	1,93E-03	1426	SIL2	8,01E-08 1/h
EX-DDCM252-6002 (min/max)	0	0%	7,34E-04	1,08E-03	2,13E-03	1282	SIL2	8,90E-08 1/h
EX-DDCM014-16 (min/max)	0	0%	6,53E-04	9,62E-04	1,89E-03	1445	SIL2	7,90E-08 1/h
EX-VNM/-VNS (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
EX-VNM/-VNS (max)	0	0%	6,65E-04	9,81E-04	1,93E-03	1426	SIL2	8,01E-08 1/h
EX-DWR/-DGM (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
EX-DWR/-DGM (max) Thermostate	0	0%	6,40E-04	9,44E-04	1,85E-03	1482	SIL2	7,70E-08 1/h
TAM/TRM/TX/TXB (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
TAM/TRM/TX/TXB (max)	0	0%	6,99E-04	1,03E-03	2,02E-03	1358	SIL2	8,41E-08 1/h
EX-Thermostate								
EX-TAM/TRM/TX/TXB (min)	0	0%	4,91E-04	7,24E-04	1,42E-03	1934	SIL2	5,90E-08 1/h
EX-TAM/TRM/TX/TXB (max)	0	0%	6,99E-04	1,03E-03	2,02E-03	1358	SIL2	8,41E-08 1/h

HFT: Minimale Hardware-Fehlertoleranz; **DC:** (Diagnosis Converage) Diagnosegrad; **PFD:** (Probability of Failure on Demand) Wahrscheinlichkeit eines Ausfalls bei Anforderung der Sicherheitsfunktion; **SIL:** (Safety Integrity Level) Sicherheitsintegritätsstufe; **MTTFd:** (Meantime to Failure dangerous) Mittlere Zeit bis zum gefährlichen Ausfall; **PFH:** (Probability of Failure per Hour) Wahrscheinlichkeit eines Fehlers/Stunde

Der Explosionsschutz ist einer der wichtigsten Aspekte für die Sicherheit von Mensch und Umwelt im Zusammenhang mit der sich permanent weiterentwickelnden Prozess- und Fertigungstechnologie.

Viele Neuerungen in der Normung, wie z. B. die Neuregelung der Anforderungen für den Staub-Explosionsschutz bedingen die permanente Überprüfung von Baumusterzulassungen.

FEMA by Honeywell hat diesem Umstand Rechnung getragen und die bewährten Ex-Druckschalter- und Thermostate nach der Normenreihe EN60079 neu zugelassen.

Dabei wurden kundenseitige Forderungen ebenso berücksichtigt, sowie die Erweiterung der Ex-Zonen und die Einbeziehung der Geräte nach der Zündschutzart "Eigensicherheit" Ex-i ins Zertifikat. Der Staub-Explosionsschutz wurde mit der Zündschutzart "Schutz durch Gehäuse Ex-t" realisiert.

NEU: IECEx Um den ständig steigenden Anforderungen an den internationalen Exposionschutz Rechnung zu tragen, hat sich Honeywell FEMA entschlossen, die Druckschalter und Thermostate der Zulassung nach IECEx zu unterziehen. Das entsprechende Zertifikat kann von der IECEx-Homepage heruntergeladen werden. Eine Kopie steht auch auf Anfrage zur Verfügung.

Alle FEMA Ex-Druckschalter und Thermostate mit neuer Zulassung auf einen Blick:

Ex-Druckschalter für flüssige und gasförmige Medien von -1 bis 63 bar:

Ex-DCM, Ex-DDCM, Ex-DNM, Ex-DNS, Ex-DWR, DCM-, DDCM-, DNM-, DNS-, DWRxxx-513, -563, -574, -575, -576, -577

Ex-Druckschalter für Brenngase von 15...250mbar: Ex-DGM, DGMxxx-513, -563, -574, -575, -576, -577

Ex-Thermostate von -20 bis 130 °C: Ex-TAM, Ex-TRM, Ex-TX TAM, TRM, TXXXX-513, -563

NEU IN DER ZULASSUNG:

- Änderung der benannten Stelle in IBExU
- Zulassung für Staub Explosionsschutz Ex-t gemäß EN60079-31
- Erweiterung der Temperatureinsatzgrenzen von -15°C auf -20°C
- Zone 20 im Sensor Druckschalter für den Einsatz bei Dauerstaubatmosphäre
- Einbezug der Eigensicherheit Ex-i gemäß EN60079-11

Ausschreibungstexte Drucktransmitter

DRUCK

Mechanische Druckschalter Produktübersicht 14 Technische Merkmale/Vorteile 15 Begriffserklärungen 16 - 17Allgemeine Beschreibung 18 Die wichtigsten technischen Daten 19 - 20Maßzeichnungen 21 - 22Einstellhinweise 23 - 24Typenschlüssel 25 Zusatzfunktionen/Anschlusspläne 26 - 29Beschreibung Typenreihe S2 (Druckschalter mit 2 Mikroschaltern) 30 - 33Produktübersicht Druckschalter für Flüssigkeiten und Gase 34 10 Kriterien für die richtige Auswahl des Druckschalters 35 Druckschalter für allgemeine Anwendungen DCM/DNM 36 Druck- und Vakuumschalter DNS/VNS mit Edelstahlsensor 1.4571 37 - 38Differenzdruckschalter DDCM 39 Vakuumschalter VCM/VNM 40 Prüfung nach DGR 2014/68/EU / Produktübersicht 41 - 42 Begriffe und Informationen 43 - 48Druckwächter/-begrenzer in Dampf- und Heißwasseranlagen DWAM/DWAMV/SDBAM 49 Druckwächter/-begrenzer in Sicherheitstechnik DBS 50 - 52Maximaldruckbegrenzer für Flüssiggasanlagen FD 53 54 Druckwächter für Brenngase DGM Druckwächter-/begrenzer für Brenngase und flüssige Brennstoffe DWR/DWR-B 55 - 56Drucküberwachung in explosionsgefährdeten Bereichen 57 - 60Allgemeine Hinweise zum Explosionsschutz Produktübersicht Mechanische Ex-Druckschalter 61 EX-DCM, EX-DNM 62 EX-VNS, EX-DNS 63 **EX-DDCM** 64 EX-VCM, EX-VNM 65 **EX-DWR** 66 EX-DGM 67 Für Luft und Klimatechnik 68 - 69HCD, DPS **Elektronische Druckschalter** Produktübersicht Elektronische Druckschalter und Drucktransmitter 70 Smart DCM 72 - 73Smart DCM DIFF 74 - 7576 – 81 Smart Press PST-R Ausschreibungstexte Druckschalter 82 **Drucktransmitter** Produktübersicht 84 - 85für Flüssigkeiten und Gase Smart SN 86 - 87Smart SN DIFF 88 - 89Drucktransmitter PTI, PTU 90 - 9192 - 93Differenz-Drucktransmitter DTI, DTU für Luft und Klimatechnik DPTE, DPTA, DPTAQ 94 - 95

96

TEMPERATUR Mechanische Thermostate Produktübersicht Mechanische Thermostate: Die wichtigs:

Produktübersicht	98
Mechanische Thermostate: Die wichtigsten technischen Daten	99 – 101
Zusatzfunktionen und Servicefunktionen für Thermostate	102
für Luft und Klimatechnik Produktübersicht	103 – 104
Industrieraumthermostate TRM und T6120 A/B	105 – 107
Raum- und Kanalhygrostate H	108
Frostschutzthermostat FT69	109
Elektronischer Frostschutzthermostat FTSE	110 – 111
für Flüssigkeiten und Gase / Produktübersicht	112 – 113
Kapillarrohrthermostate TAM	114
Stabthermostate TX	115
Anlegethermostate STW/STB	116
Temperaturwächter, Temperaturbegrenzer, bauteilgeprüft STB	117
Temperaturwächter, Temperaturbegrenzer, bauteilgeprüft STB/STW	118
Thermostate in Ex-Ausführung	
Allgemeine Informationen	119
EX-TX	120
EX-TAM	121
EX-TRM	122

Elektronische Thermostate

Elektronischer Thermostat/Temperaturtransmitter Smart Temp TST-R 124 – 128

Temperatursensoren

Allgemeine Hinweise	130
Temperatursensor Pt100 in Edelstahl	131
Ausschreibungstexte Thermostate	132

Strömungswächter

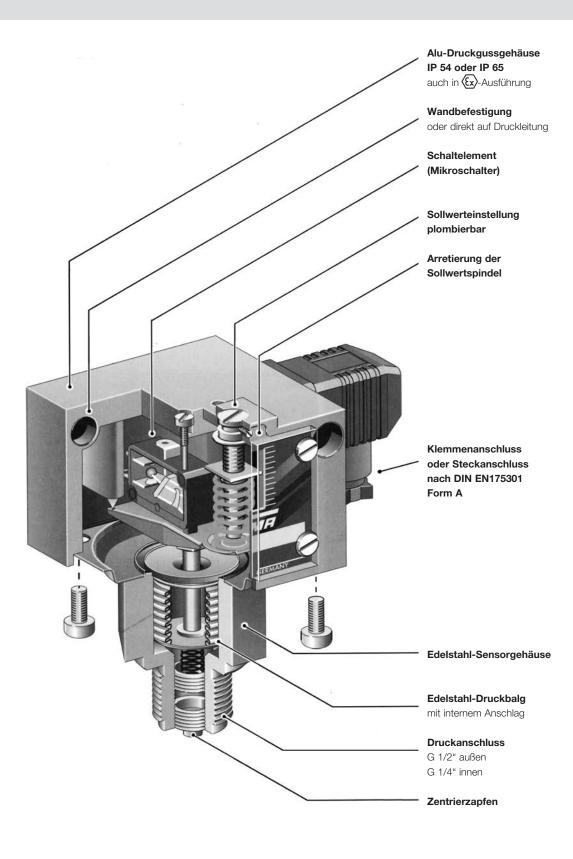
3 .1 3.114.1.931.431	
Produktübersicht	134 – 135
Luftströmungsüberwachung S6040, KSL, SWL	136 – 138
Strömungsüberwachung in Flüssigkeiten und Gasen S6065, KSW, SWW	139 – 142

ZUBEHÖR

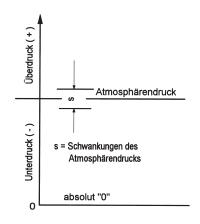
Ventilblöcke (VKD) für Druckschalter und Drucktransmitter	144
Wassersackrohre, Adapter, Druckstoßminderer und Verschraubungen	145
Druckmittler und Trennmembranen ZFV	146
Zubehör für Thermostate, Druckwächter und Transmitter	147
Tauchhülsen für Thermostate und Temperaturtransmitter	148

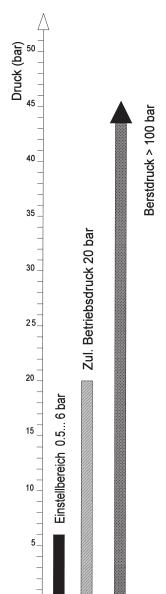
Außendienst und Vertretungen	2
Nachfolgeartikel	149 – 153
Allgemeine Geschäftsbedingungen	154 – 156

Туре	Seite	Туре	Seite	Туре	Seite
ASW	142	H 60/H61	108	S 60	136, 139
ASL	138	H1	147	SDBAM	49
AZ3.1B1	29	HCD	68	SLF	138
				ST12	78, 125
D CM	36	K 430/480	145	ST218	147
DDCM	39	KSL	137	ST5	147
DGM	54	KSW	141	STA12	125
DMW	145			STB	116, 117
DNM	36	MAU8	145	STW	116, 117
DNS	37, 38			STW/TR	118
DPS	69	N PT1	145	STB/TW	118
DPTA	95			STB/TR	118
DPTAQ	95	PA	136, 139	SWF	142
DPTE	94	Р	131		
DTI/DTU	92	P2	147	T 61	106
DWAM	49, 51	P2-TVS	125	TNSTF	118
DWR	51, 52, 55, 56	PS	73	TAM	114
		PSH	73, 75	TRM	105
Ex-DCM	62	PST	77	TST	124
Ex-DDCM	64	PTI/PTU	90	TWP	117
Ex-DGM	67	PTH	89	TX	115
Ex-DNM	62	PTS	87, 89		
Ex-DNS	63			U	145
Ex-DWR	66	R1/Ms	148		
Ex-TAM	121	R1/Nst	148	V CM	40
Ex-TRM	122	R10/Ms	148	VKD	144
Ex-TX	120	R10/Nst	148	VNM	40
Ex-VCM	65	R2/Ms	148	VNS	37, 38
Ex-VNM	65	R2/Nst	148		
Ex-VNS	63	R20/Ms	148	W LP	147
		R20/Nst	148	WZ2.2	29
F D	53	R3/Ms	148		
FT	109	R4	147	Z F	26 – 29
FTSE	110	R5	147	ZFT	102
		R6	148	ZFV	146
G 12	148	R7	148		
		RN10	148		
		RN20	148		


Тур	Medium*	Druck- bereiche	Richtlinien für CE	Norm- grundlage	Kommentare	Seite
HCD	Luft und Brenngase	0,2 mbar bis 150 mbar	EU/2016/426	DIN EN1854	Differenzdruckwächter	68
DPS	Luft und nicht aggressive Gase	20Pa bis 2500 Pa	EU/2016/426	DIN EN1854	Differenzdruckwächter	69
DCM DNM	nicht aggressive Flüssigkeiten und Gase	1 mbar bis 63 bar	RL 2014/35/EU	DIN EN60730	Mechanischer Druckschalter	36
Ex-DCM Ex-DNM	nicht aggressive Flüssigkeiten und Gase	1 mbar bis 63 bar	ATEX 2014/34/EU IECEx	DIN EN60730, DIN EN60079	Mechanischer Ex-Druckschalter	62
DNS VNS	aggressive Flüssigkeiten und Gase	-116 bar	RL 2014/35/EU	DIN EN60730	Druck-/Vakuumschalter mit Edelstahlsensor aus 1.4571	37–38
Ex-DNS Ex-VNS	aggressive Flüssigkeiten und Gase	-116 bar	ATEX 2014/34/EU IECEx	DIN EN60730, DIN EN60079	Ex-Druck-/Ex-Vakuum- schalter mit Edelstahl- sensor aus 1.4571	63
DDCM	Flüssigkeiten und Gase	4 mbar bis 16 bar	RL 2014/35/EU	DIN EN60730	Differenzdruckwächter	39
Ex-DDCM	Flüssigkeiten und Gase	4 mbar bis 16 bar	ATEX 2014/34/EU IECEx	DIN EN60730, DIN EN60079	Ex-Differenzdruck- wächter	64
VCM VNM	Flüssigkeiten und Gase	-10,5 bar	RL 2014/35/EU	DIN EN60730	Vakuumschalter	40
Ex-VCM Ex-VNM	Flüssigkeiten und Gase	-10,5 bar	ATEX 2014/34/EU IECEx	DIN EN60730, DIN EN60079	Ex-Vakuumschalter	65
DWAM DWAMV SDBAM	Dampf und Heißwasser	0,132 bar	RL 2014/68/EU	VdTÜV Druck 100, DIN EN12952-11, DIN EN12953-9	Druckwächter und Druckbegrenzer	49
DBS	Flüssigkeiten und Gase	0,1 bar bis 40 bar	RL 2014/68/EU ATEX 2014/34/EU IECEX	VdTÜV Druck 100, DIN EN 1854, EN 13611 DIN EN12952-11, DIN EN12953-9	Leitungsüberwachend mit Trennschaltverstärker	50-52
FD	Flüssiggas	3 – 16 bar	RL 2014/68/EU ATEX 2014/34/EU IECEX	VdTÜV Druck 100, DIN EN 764-7	Leitungsüberwachend mit Trennschaltverstärker	53
DGM	Brenngase	15 mbar bis 1,6 bar	EU/2016/426	DIN EN1854, DIN EN13611	Druckwächter speziell geeignet für Brenngase	54
Ex-DGM	Brenngase	15 mbar bis 250 mbar	EU/2016/426 ATEX 2014/34/EU IECEx	DIN EN1854, DIN EN13611, DIN EN60079	Ex-Druckwächter speziell geeignet für Brenngase	67
DWR	Dampf, Heißwasser, Brenngase und flüssige Brennstoffe	0,1 bar bis 40 bar	RL 2014/68/EU EU/2016/426	VdTÜV Druck 100, DIN EN1854, DIN EN12952-11, DIN EN12953-9	Druckschalter "besondere Bauart" durch Prüfung mit 2 Millionen Schaltspielen	55-56
Ex-DWR	Dampf, Heißwasser, Brenngase und flüssige Brennstoffe	0,1 bar bis 40 bar	RL 2014/68/EU EU/2016/426 ATEX 2014/34/EU IECEx	VdTÜV Druck 100, DIN EN1854, DIN EN12952-11, DIN EN12953-9, DIN EN60079	Ex-Druckschalter "besondere Bauart" durch Prüfung mit 2 Millionen Schaltspielen	66

^{*} Medienberührte Werkstoffe sind in den jeweiligen Datenblättern aufgeführt. Die Prüfung auf Medienbeständigkeit obliegt generell dem Planer, bzw. dem technischen Entscheider.




Mechanische Druckschalter

Technische Merkmale/Vorteile

Druckangaben bei einem Druckschalter Beispiel DWR625:

Einstellbereich: 0,5-6 bar Zul. Betriebsdruck: 20 bar Berstdruck: >100 bar

Begriffe

Druckangaben

Überdruck Druck über dem jeweiligen Atmosphärendruck. Bezugspunkt ist der

Atmosphärendruck.

Unterdruck Druck unter dem jeweiligen Atmosphärendruck. Bezugspunkt ist der

Atmosphärendruck.

Absolutdruck Überdruck gegenüber absolutem Vakuum.

Differenzdruck Druckunterschied zwischen 2 Druckmessstellen.

Relativdruck Über- oder Unterdruck relativ zum jeweiligen Atmosphärendruck.

Die Druckangaben in allen FEMA-Unterlagen sind als Relativdruck zu verstehen.

Es handelt sich also immer um Druckunterschiede zum jeweiligen Atmosphärendruck. Überdruck erhält ein positives, Unterdruck ein negatives Vorzeichen.

Zulässiger Betriebsdruck (maximal zulässiger Druck)

Der maximale Betriebsdruck versteht sich als obere Grenze, bei dem die Funktion, die Schaltsicherheit und die Dichtigkeit in keiner Weise beeinträchtigt werden (Werte siehe Typenübersicht).

Berstdruck (Prüfdruck)

Bei den bauteilgeprüften Typen ist durch eine vom TÜV bestätigte Druckprüfung nachgewiesen, dass der Berstdruck mindestens die in der Typenübersicht genannten Werte erreicht. Bei den Druckprüfungen wurden die Messbälge zwar bleibend verformt, eine Leckage bzw. ein Bersten der drucktragenden Teile ist jedoch nicht erfolgt. Der Berstdruck ist in der Regel ein Mehrfaches des zulässigen Betriebsdrucks.

Einstellbereich

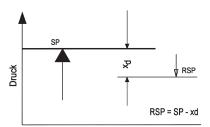
Druckbereich, in dem der Abschaltdruck durch die Sollwertspindel eingestellt werden kann.

Druckeinheiten

Einheit	bar	mbar	Pa	kPa	MPa	(psi) lb/m²
1 bar	1	1000	10 ⁵	100	0.1	14.5
1 mbar	0.001	1	100	0.1	10-4	0.0145
1 Pa	10-5	0.01	1	0.001	10-6	1.45 · 10 ⁻⁴
1 kPa	0,01	10	1000	1	0.001	0,145
1 MPa	10	10 ⁴	10 ⁶	1000	1	145

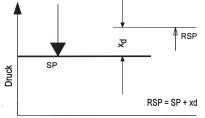
In FEMA-Unterlagen werden die Drücke in **bar** oder **mbar** angegeben.

Wichtiger Hinweis:

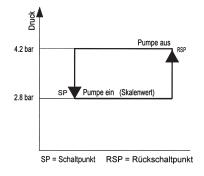

Alle Druckangaben sind Über- bzw. Unterdrücke gegenüber dem Atmosphärendruck. Überdrücke erhalten ein positives, Unterdrücke ein negatives Vorzeichen.

Begriffe

Maximaldrucküberwachung


RSP =SP -xd

SP = Schaltpunkt RSP = Rückschaltpunkt xd = Schaltdifferenz (Hysterese)


Minimaldrucküberwachung

RSP = SP + xd

SP = Schaltpunkt RSP = Rückschaltpunkt xd = Schaltdifferenz (Hysterese)

Atmosphärendruck (-) Yopudang() Atmosphärendruck RSP (z.B. - 0,6 bar) absolut "O"

Schaltdifferenz

Die Schaltdifferenz (Hysterese) ist der Druckunterschied zwischen dem **Schaltpunkt (SP)** und dem **Rückschaltpunkt (RSP)** eines Druckschalters. Durch Toleranzen in den Mikroschaltern, Federn und Druckbälgen ergeben sich Toleranzen der Schaltdifferenz. Die Angaben in den Typenübersichten sind deshalb immer Mittelwerte. Bei Begrenzerfunktionen ist die Schaltdifferenz völlig ohne Bedeutung, da nur der Schaltpunkt interessiert, bei dem die Abschaltung erfolgt, und nicht der Rückschaltpunkt. Bei einer **Reglerfunktion**, d. h. bei Druckschaltern, die zum **Ein- und Ausschalten** eines Brenners, einer Pumpe usw. dienen, ist ein Druckschalter mit **einstellbarer Schaltdifferenz** zu wählen. Durch Verändern der Schaltdifferenz kann die Schaltfrequenz des Brenners oder der Pumpe beeinflusst werden.

Einstellbare Schaltdifferenz / Justage

Bei Druckschaltern mit einstellbarer Schaltdifferenz kann die Hysterese in den vorgegebenen Grenzen eingestellt werden. Schaltpunkt (SP) **und** Rückschaltpunkt (RSP) sind exakt definierbar. Bei der Einstellung des Druckschalters ist die Lage der Schaltdifferenz bzw. die Art der Werksjustierung zu beachten. Einige Druckschalter sind bei "fallendem" Druck justiert (z. B. Minimaldruckwächter der Baureihe DCM), d. h., die Umschaltung bei fallendem Druck erfolgt beim Skalenwert, die Schaltdifferenz liegt darüber, die Rückschaltung erfolgt beim Skalenwert + Schaltdifferenz.

Ist der Druckschalter "steigend" justiert, erfolgt die Umschaltung beim Skalenwert, die Rückschaltung beim Skalenwert – Schaltdifferenz (siehe Wirkungsrichtung). Die Art der Justierung ist in den Datenblättern angegeben.

Wirkungsrichtung

Prinzipiell kann jeder Druckschalter sowohl zur Maximaldruck- als auch zur Minimaldrucküberwachung eingesetzt werden. Ausgenommen davon sind Druckbegrenzer, deren Wirkungsrichtung (max. oder min.) zwingend vorgegeben ist. Zu beachten ist lediglich, dass die Skalenangabe um die Schaltdifferenz abweichen kann. Siehe Beispiel links unten: Skalenwert ist 2,8 bar.

Maximaldruck-Überwachung

Bei steigendem Druck wird bei Erreichen des eingestellten Schaltdrucks umgeschaltet (SP). Der Rückschaltpunkt (RSP) liegt um die Schaltdifferenz niedriger.

Minimaldruck-Überwachung

Bei fallendem Druck wird bei Erreichen des eingestellten Schaltdrucks umgeschaltet (SP). Der Rückschaltpunkt (RSP) liegt um die Schaltdifferenz höher.

Wirkungsrichtung im Unterdruckbereich

Besonders wichtig ist die Definition der Wirkungsrichtung im Unterdruckbereich. Steigend heißt hier nicht steigendes Vakuum, sondern steigender Druck (von absolut "0" aus gesehen). "Fallender" Druck bedeutet steigendes Vakuum.

Beispiel: Vakuumschalter, eingestellt auf –0,6 bar fallend, bedeutet: Bei fallendem Druck (steigendes Vakuum) wird bei –0,6 bar umgeschaltet (SP). Der Rückschaltpunkt ist um die Schaltdifferenz höher (z. B. bei –0,55 bar).

Angaben zur Einstellung eines Druckschalters

Um den Schaltpunkt eines Druckschalters exakt zu definieren, ist es immer notwendig, neben der Druckangabe auch die Wirkungsrichtung festzulegen. Die Angabe "steigend" bedeutet, dass die Umschaltung beim festgelegten Einstellwert ausgelöst wird, wenn der Druck ansteigt. Der Rückschaltpunkt liegt dann um die Schaltdifferenz niedriger. Die Angabe "fallend" ist sinngemäß zu verstehen.

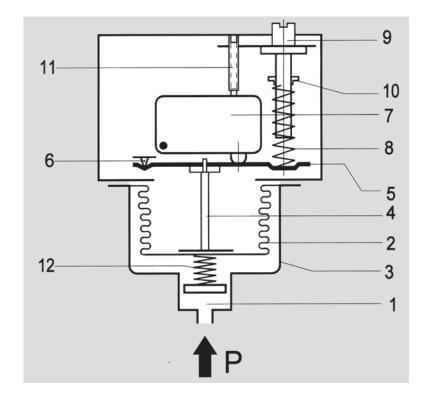
Wichtig bei Angaben zur Einstellung eines Druckschalters:

Neben dem Schaltpunkt ist auch die Wirkungsrichtung (fallend oder steigend) anzugeben.

Beispiel für die Auswahl eines Druckschalters:

Es soll eine Pumpe bei 2,8 bar ein- und bei 4,2 bar wieder ausgeschaltet werden. Gewählte Type: DCMV6 It. Datenblatt DCM. Einstellung: Skalenzeiger auf 2,8 bar (unterer Schaltpunkt). Schaltdifferenz auf 1,4 bar (nach Manometer einstellen). Abschaltpunkt: 2,8 bar +1,4 bar = 4,2 bar.

Druckschalter


Allgemeine Beschreibung

Wirkungsweise

Der im Sensorgehäuse (1) anliegende Druck wirkt auf den Messbalg (2).

Druckänderungen führen zu Bewegungen des Messbalgs (2), die über einen Druckstift (4) auf die Schaltbrücke (5) übertragen werden. Die Schaltbrücke ist in gehärteten Spitzen (6) reibungsfrei gelagert. Bei steigendem Druck bewegt sich die Schaltbrücke (5) nach oben und betätigt den Mikroschalter (7). Als Gegenkraft wirkt die Feder (8), deren Vorspannung durch die Einstellschraube (9) verändert werden kann (Schaltpunkteinstellung). Durch Drehen der Sollwertspindel (9) wird die Laufmutter (10) bewegt und die Vorspannung der Feder (8) verändert. Die Schraube (11) dient zur werksseitigen Justierung des Mikroschalters. Die Gegendruckfeder (12) sorgt für stabiles Schaltverhalten, auch bei niedrigen Einstellwerten.

- 1 = Druckanschluss
- 2 = Messbalg
- 3 = Sensorgehäuse
- 4 = Druckstift
- 5 = Schaltbrücke
- **6** = Lagerspitzen
- 7 = Mikroschalter oder andere Schaltelemente
- 8 = Sollwertfeder
- 9 = Stellspindel (Schaltpunkteinstellung)
- 10 = Laufmutter
- (Schaltpunktanzeige)
- 11 = Justierschraube für Mikroschalter (Werksjustierung)
- **12** = Gegendruckfeder

Drucksensoren

Bis auf wenige Ausnahmen im Niederdruckbereich sind alle Drucksensoren mit Messbälgen, teilweise aus einer Kupferlegierung, meist aber in hoher Nirostahlqualität ausgestattet. Die Messbälge sind, gemessen an den zulässigen Werten, niedrig belastet und machen nur eine geringe Hubbewegung. Daraus resultiert eine hohe Lebensdauer bei gleichzeitig geringen Schaltpunktdriften und hoher Überdrucksicherheit. Außerdem ist der Hub der Druckbälge durch einen internen Anschlag begrenzt, damit die aus dem Überdruck resultierenden Kräfte nicht auf das Schaltwerk übertragen werden können. Die mediumsberührten Teile des Sensors sind ohne Zusatzwerkstoffe miteinander verschweißt, die Sensoren enthalten keinerlei Dichtungen. Cu-Bälge, die nur für niedrige Druckbereiche verwendet werden, sind mit dem Sensorgehäuse verlötet. Die Sensorgehäuse und alle mediumsberührten Teile im Sensor können auch komplett in Edelstahl 1.4571 hergestellt werden (Baureihe DNS). Genaue Werkstoffangaben enthalten die einzelnen Datenblätter.

Druckanschluss

Der Druckanschluss ist bei allen Druckschaltern nach DIN 16288 (Manometeranschluss G 1/2A) ausgeführt. Wahlweise kann auch im Innengewinde G 1/4 nach ISO 228 Teil 1 angeschlossen werden. Max. Einschraubtiefe am Innengewinde G 1/4 = 9 mm.

Zentrierzapfen

Bei Anschluss am Außengewinde G 1/2 mit Dichtung im Gewinde (d. h. ohne die beim Manometeranschluss übliche Dichtscheibe) ist der beigelegte Zentrierzapfen nicht erforderlich. Differenzdruckschalter haben 2 Druckanschlüsse (Max. und Min.) und sind je an einem Innengewinde G 1/4 anzuschließen.

Die wichtigsten technischen Daten

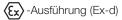
Gültig für alle Druckschalter mit Mikroschalter, der Baureihen DCM, DNM, DWAM, DWAMV, SDBAM, VCM, VNM, DNM, DWR, DGM, DNS, DDCM. Die techn. Daten der bauteilgeprüften Geräte weichen teilweise geringfügig davon ab. (Siehe jeweiliges Typenblatt).

Normalausführung Steckanschluss

	300

Schaltgehäuse	Aluminium Druckguss GDAISi 12	Aluminium Druckguss GDAISi 12				
Druckanschluss	G 1/2" Außengewinde und G 1/4" Innengewinde. Bei Differenzdruckschaltern DDCM Innengewinde 1/4"	G 1/2" Außengewinde und G 1/4" Innengewinde. Bei Differenzdruckschaltern DDCM Innengewinde 1/4"				
Schaltfunktion und Anschlussplan (gilt nur für Ausführung mit Mikroschalter)	Potentialfreier Umschaltkontakt. Bei steigendem Druck von 3–1 auf 3–2 einpolig umschaltend.	Potentialfreier Umschaltkontakt. Bei steigendem Druck von 3–1 auf 3–2 einpolig umschaltend.				
Schaltleistung (für Mikroschalter mit Silberkontakt)	8 A bei 250 V AC 5 A bei 250 V AC induktiv 8 A bei 24 V DC 0,2 A bei 110 V DC 0,3 A bei 250 V DC min. 10 mA, 12 V DC	8 A bei 250 V AC 5 A bei 250 V AC induktiv 8 A bei 24 V DC 0,2 A bei 110 V DC 0,3 A bei 250 V DC min. 10 mA, 12 V DC				
Einbaulage	vorzugsweise senkrecht (siehe techn. Datenblatt)	vorzugsweise senkrecht (siehe techn. Datenblatt)				
Schutzart (bei senk- rechter Einbaulage)	IP 54	IP 65				
Elektrischer Anschluss	Steckanschluss	Klemmenanschluss				
Kabeleinführung	Pg 11	M 16 x 1.5				
Umgebungstemperatur	-25 bis +70 °C (Ausnahmen: DWAM-/DWAMV-/SDBAM-Reihe -20+70 °C DGM-/FD-Reihe: -25 bis +60 °C DCM4016, 4025, 1000, VCM4156: -15 bis +60 °C)	-25 bis +70 °C (Ausnahmen: DWAM-/DWAMV-/SDBAM-Reihe -20+70 °C DGM-/FD-Reihe: -25 bis +60 °C DCM4016, 4025, 1000, VCM4156: -15 bis +60 °C)				
Schaltpunkt	An Stellspindel einstellbar	nach Abnahme des Schaltgehäusedeckels				
Schaltdifferenz	einstellbar oder nicht einstellbar (siehe Typenübersicht)	einstellbar oder nicht einstellbar (siehe Typenübersicht)				
Mediumstemperatur	max. 70 °C, kurzzeitig 85 °C	max. 70 °C, kurzzeitig 85 °C				
Relative Feuchte	15 95% (nicht kondensierend)	15 95% (nicht kondensierend)				
Vakuum Wiederholgenauigkeit der Schaltpunkte	Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) die oben genannten Grenzwerte am Schaltgerät sichergestellt sind. Alle Druckschalter können mit Vakuum beaufschlagt werden, das Gerät wird dadurch nicht beschädigt. (Ausnahme DCM1000) < 1 % vom Arbeitsbereich (bei Druckbereichen > 1 bar)					
Vibrationsfestigkeit	Bis 4 g keine nennenswerten Abweichungen.					
Mechanische Lebensdauer (Drucksensor)	Bei sinusförmiger Druckbeaufschlagung und Raumtemperatur 10 x 106 Schaltspiele. Die zu erwartende Lebensdauer ist sehr stark von der Art der Druckbeaufschlagung abhängig, deshalb kann diese Angabe nur als grober Richtwert dienen. Bei pulsierender Druckbeaufschlagung oder bei Druckschlägen in hydraulischen Systemen ist eine Druckstoßminderung zu empfehlen.					
Elektrische Lebensdauer (Mikroschalter)	100.000 Schaltzyklen bei Nennstrom 8 A, 250 V AC. Mit reduzierter Kontaktbelastung erhöht sich die Anzahl der möglichen Schaltzyklen.					
Isolationswerte	Überspannungskategorie III, Verschmutzungsgrad 3, Bemessungsstoßspannung 4000 V. Die Komformität zu DIN VDE 0110 wird bestätigt.					
Öl- und fettfrei	Die medienberührten Teile aller Druckschalter sind öl- und fettfrei (ausgenommen Typenreihen HCD und DPS). Die Sensoren sind hermetisch gekapselt, sie enthalten keine Dichtungen (siehe auch ZF1979, besondere Verpackung).					

Die wichtigsten technischen Daten


Gültig für alle Druckschalter mit Mikroschalter, der Baureihen DCM, DNM, DGM, VNM, VCM, DWAM, DWR, DNS, DDCM.

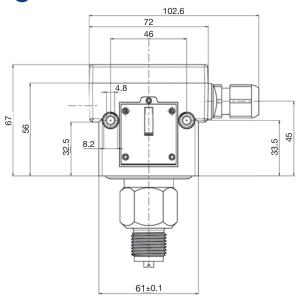
Die techn. Daten der bauteilgeprüften Geräte weichen teilweise geringfügig davon ab. (Siehe jeweiliges Typenblatt).

Ex-i-Ausführung

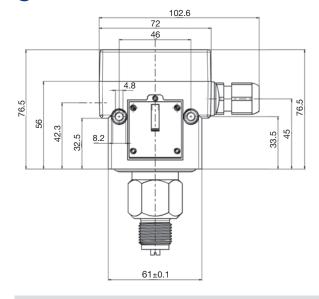
...500

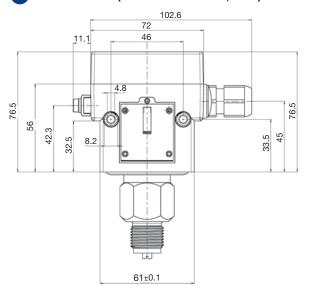
Schaltgehäuse	Aluminium Druckguss GDAISi 12	Aluminium Druckguss GDAISi 12			
Druckanschluss	G 1/2" Außengewinde und G 1/4" Innengewinde.	G 1/2" Außengewinde und G 1/4" Innengewinde.			
	Bei Differenzdruckschaltern DDCM	Bei Differenzdruckschaltern DDCM			
	Innengewinde 1/4"	Innengewinde 1/4"			
Schaltfunktion und	Potentialfreier Umschaltkontakt.	Potentialfreier Umschaltkontakt.			
Anschlussplan	Bei steigendem Druck	Bei steigendem Druck			
(gilt nur für Ausführung	von 3–1 auf 3–2	von 3–1 auf 3–2			
mit Mikroschalter)	einpolig umschaltend.	einpolig umschaltend.			
Schaltleistung	max.: 100mA, 24VDC	3 A bei 250 V AC			
	min.: 2mA, 5VDC	2 A bei 250 V AC induktiv			
		3 A bei 24 V DC			
		0,1 A bei 250 V DC			
		min. 2 mA, 24 V DC			
Einbaulage	senkrecht mit Schaltgerät nach oben	senkrecht mit Schaltgerät nach oben			
Schutzart (bei senk-	IP 65	IP 65			
rechter Einbaulage)					
Zündschutzart	🖾 II 1/2G Ex ia IIC T6 Ga/Gb	🖾 II 2G Ex d e IIC T6 Gb			
		II 1/2D Ex ta/tb IIIC T80 °C Da/Db			
EG-Baumuster-	IBExU12ATEX1040	IBExU12ATEX1040			
prüfbescheinigungs-					
nummer		-			
Elektrischer Anschluss	Klemmenanschluss	Klemmenanschluss			
Kabeleinführung	M 16 x 1,5	M 16 x 1,5			
Umgebungstemperatur		-20 bis +60 °C			
	DWAM-Reihe -20+60 °C				
	DGM-/FD-Reihe: -25 bis +60 °C				
	DCM4016, 4025, 1000, VCM4156: -15 bis +60 °C	max. 60 °C			
Mediumstemperatur	max. 60 °C				
Relative Feuchte	15 95% (nicht kondensierend)	15 95% (nicht kondensierend)			
Schaltpunkt	nach Abnahme des Schaltgehäusedeckels	nach Abnahme des Schaltgehäusedeckels			
Schaltdifferenz	nicht einstellbar nicht einstellbar				
Vakuum		n durch geeignete Maßnahmen (z.B. Wassersackrohr)			
	die oben genannten Grenzwerte am Schaltgerät s				
140 1 1 1 1 1 1	Vakuum beaufschlagt werden, das Gerät wird dac				
Wiederholgenauigkeit	< 1 % vom Arbeitsbereich (bei Druckbereichen > 1	bar)			
der Schaltpunkte Vibrationsfestigkeit	Die 4 g keine nennengwerten Abweighungen				
	Bis 4 g keine nennenswerten Abweichungen. Bei sinusförmiger Druckbeaufschlagung und Raun	atomporatur 10 v 106 Cabaltaniala			
Mechanische Lebensdauer					
(Drucksensor)	Die zu erwartende Lebensdauer ist sehr stark von der Art der Druckbeaufschlagung abhängig, deshalb kann diese Angabe nur als grober Richtwert dienen. Bei pulsierender Druckbeaufschlagung oder bei				
(Druckscrisor)	Druckschlägen in hydraulischen Systemen ist eine Druckstoßminderung zu empfehlen.				
Elektrische	100.000 Schaltzyklen bei Nennstrom.				
Lebensdauer	Mit reduzierter Kontaktbelastung erhöht sich die Anzahl der möglichen Schaltzyklen.				
(Mikroschalter)					
Isolationswerte	Überspannungskategorie III, Verschmutzungsgrad 3, Bemessungsstoßspannung 4000 V. Die Komformität zu DIN VDE 0110 wird bestätigt.				
Öl- und fettfrei	Die medienberührten Teile aller Druckschalter sind öl- und fettfrei (ausgenommen Typenreihen HCD				
	und DPS). Die Sensoren sind hermetisch gekap				
	ZF1979, besondere Verpackung).	<u> </u>			

Druckschalter

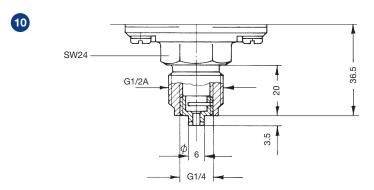

Maßzeichnungen der Schaltgehäuse

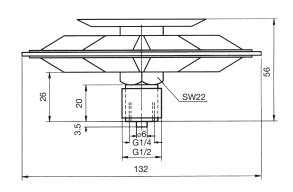
(Angaben in mm)


1 Gehäuse 200 (Steckanschluss)


2 Gehäuse 300 (Klemmenanschluss)

3 Gehäuse 500 (Klemmenanschluss, Ex-i)

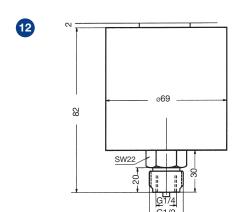

4 Gehäuse 700 (Klemmenanschluss, Ex-d)

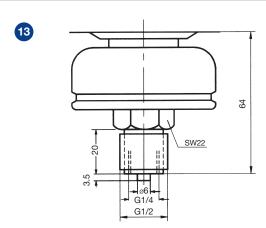


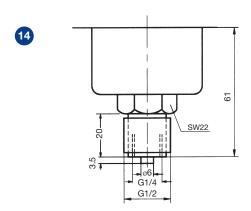
Maßzeichnungen der Drucksensoren

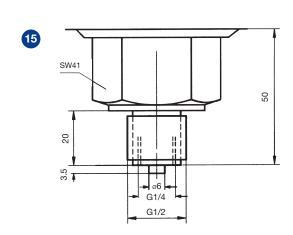
1

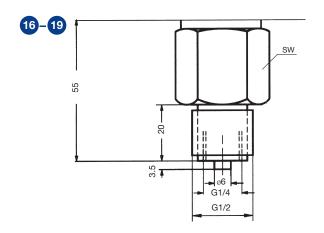
(Angaben in mm)

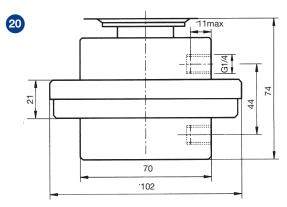


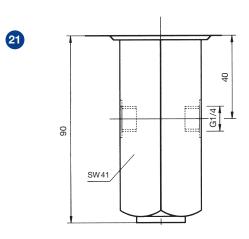





Maßzeichnungen der Drucksensoren


(Angaben in mm)

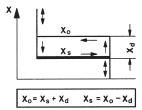




Maßzeichnung	sw
16	22
17	24
18	30
19	32

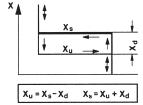
Einstellhinweise

Justierung der Druckschalter werksseitig


Bedingt durch Toleranzen in den Kennlinien der Fühler und Federn sowie durch Reibung in der Schaltkinematik sind geringe Abweichungen zwischen Einstellwert und Schaltpunkt unvermeidbar. Die Druckschalter werden deshalb werksseitig so justiert, dass im mittleren Bereich die Sollwerteinstellung und der tatsächliche Schaltdruck am besten übereinstimmen. Mögliche Abweichungen verteilen sich nach beiden Seiten gleichmäßig.

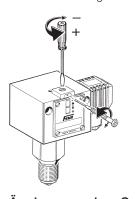
Je nach hauptsächlichem Verwendungszweck der jeweiligen Typenreihen wird deshalb werksseitig entweder auf fallenden Druck (Justierung am unteren Schaltpunkt) oder steigenden Druck (Justierung am oberen Schaltpunkt) grundjustiert.

Beim Einsatz des Druckschalters entgegen der Grundjustage verschiebt sich der tatsächliche Schaltpunkt zum eingestellten Schaltpunkt um den Wert der mittleren Schaltdifferenz. Da FEMA-Druckschalter sehr kleine Schaltdifferenzen aufweisen, ist dies jedoch kundenseitig bei grob eingestelltem Schaltdruck vernachlässigbar und bei der Notwendigkeit eines sehr genauen Schaltpunktes muss dieser in der gängigen Praxis sowieso mittels Manometer justiert und überprüft werden.


1. Justierung am unteren Schaltpunkt

Der Sollwert xs entspricht dem unteren Schaltpunkt, der obere Schaltpunkt xolliegt um die Schaltdifferenz xd höher.

2. Justierung am oberen Schaltpunkt


Der Sollwert x^s entspricht dem oberen Schaltpunkt, der untere Schaltpunkt x^u liegt um die Schaltdifferenz x^d niedriger.

Welche Art der Justierung gewählt wurde, ist in den technischen Daten der jeweiligen Typenreihe angegeben.

Einstellung der Schaltdrücke

Vor Verstellung ist der oberhalb der Skala liegende Sicherungsstift um max. 2 Umdrehungen zu lösen und nach der Einstellung wieder anzuziehen. Die Einstellung des Schaltdrucks erfolgt an der Spindel. Der eingestellte Schaltdruck ist an der Skala ablesbar. Genaue Einstellung der Schaltpunkte ist nur mit einem Manometer möglich.

Rechtsdrehung: größere Differenz Linksdrehung: kleinere Differrenz

Rechtsdrehung: niedriger

Schaltdruck

Linksdrehung:

Schaltdruck

hoher

Bei Druckschaltern der Baureihe DWAMV und DWR...-203 ist die Wirkungsrichtung der Differenzschraube umgekehrt.

Änderung der Schaltdifferenz (nur bei Schaltgerät mit Zusatz "V", ZF203)

Mittels Gewindestift innerhalb der Spindel. Durch die Differenzverstellung ändert sich der untere Schaltpunkt nicht, lediglich der obere Schaltpunkt wird um die Differenz verschoben. Bei einer Umdrehung der Differenzschraube ändert sich die Schaltdifferenz etwa um 1/4 des gesamten Differenz-bereichs. Die Schaltdifferenz ist die Hysterese, d. h. der Druckunterschied zwischen Schaltpunkt und Rückschaltpunkt.

Plombierung der Einstellspindel (nur für Steckanschlussgehäuse 200)

Mit den als Zubehör lieferbaren Plombierteilen (Typenbezeichnung: P2), bestehend aus Plombierplatte und Kreuzlochschraube, kann die Einstellspindel für Sollwert und Schaltdifferenz abgedeckt und plombiert werden. Die Plombierteile können auch nachträglich angebaut werden. Die verlackten Justierschrauben sind damit ebenfalls abgedeckt.

Druckschalter mit Verriegelung des Schaltzustands (Wiedereinschaltsperre)

Bei Begrenzerfunktionen ist es notwendig, den Abschaltzustand zu erhalten und zu verriegeln und erst nach Beseitigung der Ursachen, die zur Sicherheitsabschaltung führten, die Verriegelung zu lösen und die Anlage wieder einzuschalten. Dazu gibt es zwei Möglichkeiten:

1. Mechanische Verriegelung innerhalb des Druckschalters

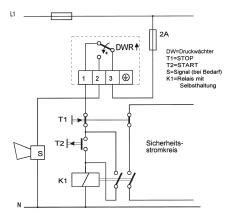
Anstelle des Mikroschalters mit selbsttätiger Rückstellung ist in den Begrenzern ein "bistabiler" Mikroschalter eingebaut. Erreicht der Druck den an der Skala eingestellten Wert, schaltet der Mikroschalter um und bleibt in dieser Stellung. Die Sperre ist durch Eindrücken der Entriegelungstaste (an der Skalenseite des Schaltgeräts durch roten Punkt gekennzeichnet) wieder zu lösen. Je nach Ausführung kann die Verriegelung bei steigendem Wert oder bei fallendem Wert wirksam sein. Die Entriegelung kann erst dann erfolgen, wenn der Druck um die vorbestimmte Schaltdifferenz abgesenkt wird bzw. bei Verriegelung am unteren Schaltpunkt wieder angehoben wurde. Bei der Auswahl des Druckbegrenzers ist zwischen Maximaldruck- und Minimaldrucküberwachung zu unterscheiden. Ex-d-Ausführungen können nicht mit interner Verriegelung ausgeführt werden.

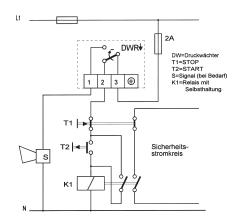
Maximaldruckbegrenzung

1 2 3 🖨

Umschaltung und Verriegelung bei steigendem Druck. Zusatzfunktion ZF205.

Anschluss Steuerstromkreis an Klemme 1 und 3.


Minimaldruckbegrenzung


2. Externe elektrische Verriegelung im Schaltschrank (Schaltungsvorschläge)

Ein Druckwächter (Mikroschalter mit selbsttätiger Rückstellung) kann auch als Begrenzer eingesetzt werden, wenn eine elektrische Verriegelung nachgeschaltet ist. Bei Druckbegrenzung in Dampf- und Heißwasserkesseln ist die externe Verriegelung nur zulässig, wenn sichergestellt ist, dass der Druckwächter "besonderer Bauart" ist.

Maximaldruckbegrenzung mit externer Verriegelung

Minimaldruckbegrenzung mit externer Verriegelung

Bei Verwendung der oben dargestellten Verriegelungsschaltung werden die Anforderungen nach DIN 57 116/VDE 0116 erfüllt, wenn die elektrischen Betriebsmittel (wie Schütze oder Relais) der externen Verriegelungschaltung VDE 0660 bzw. VDE 0435 entsprechen.

Druckschalter

Erklärung der Typenbezeichnungen - Typenschlüssel

Die Typenbezeichnungen der FEMA-Druckschalter bestehen aus einer Buchstabenkombination und einer nachfolgenden Ziffer, die den Einstellbereich kennzeichnet. Zusatzfunktionen und Ausführungsvarianten erhalten zusätzlich eine Kennziffer, die durch einen Bindestrich von der Grundtype getrennt ist. Ex-Ausführungen (Zündschutzart Ex-d) sind durch ein "Ex" vor der Typenbezeichnung gekennzeichnet.

Grundausführung (am Beispiel der DCM-Reihe)	mit Zusatzfunktion	Ex-Ausführung
DCMXXX	DCMXXX-YYY	Ex-DCMXXX
DCM —	→ Kennzeichnung der Baureihe	e (z. B. DCM)
XXX -	→ Kennziffern für den Druckbei	reich
YYY —	→ Kennzeichnung für Zusatzfur	nktionen
Ex	→ Kennzeichnung für Ex-Ausfü	hrung

Ausführung der Schaltgehäuse	
DCMXXX	Grundausführung mit Steckanschlussgehäuse
DCMXXX-2	Grundausführung mit Steckanschlussgehäuse
DCMXXX-3	Klemmenanschlussgehäuse (300)
Ex-DCMXXX	Ex-d-Schaltgerät (700)
DCMXXX-5	Ex-i Ausführung (500)

Welche Zusatzfunktion passt zu welchem Druckschalter?

	Steckanschluss Reihe 200		Klemmenanschluss Reihe 300/500					
	Zusatzfunktion ZF		Zusatzfunktion ZF					
	203	213	217	301 351	307	513	574 575	576 577
DCM/VCM	● 1	•	● 1	•	● 1	•		
VNM/DNS/VNS	•	•	•	•	•	•		
DWAM		•		•		•		•
DDCM		•		•		•		
DWR	•	•		•		•	•	•
DGM		•		•		•	•	•

lieferbar

Kombinationen von mehreren Zusatzfunktionen sind nicht möglich.

Ex-Ausführungen (Ex-d) können nur in der Grundausstattung geliefert werden. Zusatzfunktionen sind nicht möglich.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

¹ ausgenommen DCM 4016, DCM 4025, VCM 4156 und DCM 1000

Druckschalter und Druckwächter

Zusatzfunktionen / Anschlusspläne

	Steckanschluss Reihe 200 (IP 54)	Klemmenan- schluss Reihe 300 (IP 65)	Anschlussplan
Normalausführung (Steckeranschluss) Mikroschalter, einpolig umschaltend, Schalt- differenz nicht einstellbar			1 2 3 🖨
Klemmenanschluss- Gehäuse (300)		ZF301	1 2 3 🖨
Gerät mit einstellbarer Schaltdifferenz	ZF203		1 2 3 🖨
Maximalbegrenzer mit Wiedereinschaltsperre Verriegelung bei steigendem Druck siehe DWR-Baureihe	ZF205		1 2 3 🖨
Minimalbegrenzer mit Wiedereinschaltsperre Verriegelung bei fallendem Druck siehe DWR-Baureihe	ZF206		1 2 3 🖨

Mehrpreis der Zusatzfunktionen auf Anfrage.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

	Steckanschluss Reihe 200 (IP 54)	Klemmenan- schluss Reihe 300 (IP 65)	Anschlussplan
Zwei Mikroschalter, parallel (Schaltstand = 0) oder nacheinander schaltend. Schaltabstand fest, nur bei Klemmenanschlussgehäuse möglich. Schaltabstand angeben (nicht bei allen Druckschaltern möglich).		ZF307	1 2 3 4 5 6 🚇
Zwei Mikroschalter, 1 Stecker nacheinander schaltend, Schaltabstand einstellbar, Schaltschema angeben * (nicht bei allen Druck- schaltern möglich).	ZF 217 *		Auswahl der Anschlusspläne s. Datenblatt S. 32
Vergoldete Kontakte, einpolig umschaltend (nicht mit einstellbarer Schaltdifferenz lieferbar). Schaltleistung: max. 24 V DC, 100 mA, min. 5 V DC, 2 mA	ZF213		1 2 3 🖨
Schaltgehäuse mit Oberflächenschutz (Chemieausführung)		ZF351	

Mehrpreis der Zusatzfunktionen auf Anfrage.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

* Anschlusspläne für Schaltschemata siehe S. 32 Bitte bei Bestellung angeben! Bestellbeispiel: DCM10-217A-S Zusatztext: Schaltschema A4

Bestellbeispiel: DCM 6 – 205 Kennziffer der Zusatzfunktion (z.B. Maximalbegrenzer) Kennziffer für Druckbereich Fühlersystem

Bestelltext:Druckschalter
DCM6-205
oder DCM6 mit
ZF205

Druckschalter und Druckwächter

Zusatzfunktionen in Ex-i-Ausstattung

DWAM6-576

Zusatzfunktionen für Ex-i-Ausstattung

- · Gehäuse (500) mit Klemmenanschluss (IP 65), Kabeleinführung und Klemmen "blau".
- · Auch mit Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung (mit Trennschaltverstärker).
- **Wichtig:** Alle Druckschalter mit den hier aufgeführten Zusatzfunktionen ZF5... können nur zusammen mit einem geeigneten Trennschaltverstärker betrieben werden.

Anschlussplan

Zusätzlicher Hinweis: Unsere Druckschalter und Thermostate gelten im Sinne der Norm EN60079-11:2007 als "Einfaches elektrisches Betriebsmittel". Geräte dieser Art sind selbst nicht prüfpflichtig.

Vergoldete Kontakte, **ZF513** einpolig umschaltend Schaltdifferenz fest, nicht einstellbar Schaltleistung: max. 24 V DC, 100 mA, min. 5 V DC, 2 mA Für den Versorgungsstromkreis gilt: 24 V DC C_i 1nF 100 mA 100 μΗ ŀ Ausführungen ZF 574-577 mit Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung im Steuerstromkreis, siehe DBS-Reihe, Seite 50-52: Für den Versorgungsstromkreis gilt: U_{i} 14 V DC R_i 1500 Ohm C_i 1 nF 100 μΗ Öffnerkontakt mit Widerstandskombination, für **ZF**574 Minimaldrucküberwachung, vergoldete Kontakte Gehäuse mit Kunststoff beschichtet (Chemieausführung). Öffnerkontakt mit Wiedereinschaltsperre und **ZF**575 Widerstandskombination, für Minimaldrucküberwachung Gehäuse mit Kunststoff beschichtet (Chemieausführung) **ZF**576 Öffnerkontakt mit Widerstandskombination, für Maximaldrucküberwachung, vergoldete Kontakte, Gehäuse mit Kunststoff beschichtet (Chemieausführung). Öffnerkontakt mit Wiedereinschaltsperre und **ZF577** Widerstandskombination, für Maximaldrucküberwachung Gehäuse mit Kunststoff beschichtet (Chemieausführung). 1

Mehrpreis der Zusatzfunktionen auf Anfrage.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

Druckschalter

Servicefunktionen

Geräte mit Servicefunktionen werden kundenbezogen einzeln gefertigt.

Dazu ist es systembedingt notwendig, diese Artikelkombinationen verwechslungsfrei zu bezeichnen. Hauptmerkmal dieser Kombination ist die Artikelbezeichnung mit dem Zusatz "-S" auf dem Verpackungslabel sowie separate Labels mit Barcodes für jede Servicefunktion.

Servicefunktionen	Steck- anschluss	Klemmenan Reihe 300	schluss Ex-i/
Reihe 200	unsomuss	Ticine doo	Ex-d
Einstellen nach Kundenangaben:			
- ein Schaltpunkt	ZF1970*	ZF1970*	ZF1970*
- zwei Schaltpunkte oder definierte Schaltdifferenz	ZF1972*	ZF1972*	-
Einstellen u. Plombieren nach Kundenangaben:			
- ein Schaltpunkt	ZF1971*	_	_
- zwei Schaltpunkte oder definierte Schaltdifferenz	ZF1973*	-	-
Kennzeichnung der Geräte n. Kundenangaben d. Aufkleber	ZF1978	ZF1978	ZF1978
Besondere Verpackung für öl- u. fettfreie Lagerung Prüfbescheinigungen nach EN 10 204	ZF1979	ZF 1979	ZF1979
- Werkszeugnis 2.2 aus nichtspezifischer Prüfung pro Exemplar	WZ2.2	WZ2.2	WZ2.2
- Abnahmeprüfzeugnis 3.1 aus spezifischer Prüfung	AZ3.1B1	AZ3.1B1	AZ3.1B1
- Abnahmeprüfzeugnis für Trennmembranen FV	AZ3.1-V	AZ3.1-V	AZ3.1-V

^{*} Schaltpunkteinstellung: Bitte Schaltpunkt und Wirkungsrichtung angeben (steigender oder fallender Druck).

Die Servicefunktionen stehen für nachfolgende Typenreihen (inkl. Ex-Versionen) zur Verfügung: Druckschalter: DCM, DNM, DNS, VNS, VCM, VNM, DDCM, DWR, DWAM, DWAMV, SDBAM, DGM, FD

Bestellablauf für Geräte mit Servicefunktionen

Beispiel:

Bestellung über 1 DCM6, eingestellt auf 4 bar steigend, gekennzeichnet mit kundengewünschter Bezeichnung PSH008 und Abnahmeprüfzeugnis 3.1.

Die Auftragsbestätigung lautet:

1 DCM6-S

1 ZF1970: eingestellt auf 4 bar steigend

1 ZF1978: PSH008

1 AZ3.1B1

Lieferschein: Labels mit Barcodes auf der Verpackung:

DCM6-S

ZF1970: eingestellt auf 4 bar steigend

ZF1978: PSH008

AZ3.1B1

Verpackungsinhalt: 1 DCM6 (ohne Zusatz "-S") bezeichnet mit

1 ZF1970: eingestellt auf 4 bar steigend

1 ZF1978: PSH008

1 AZ3.1B1 geht separat per Post zu.

1 Montage- und Bedienungsanleitung

Typenreihe S2

werden.

Druckschalter mit 2 Mikroschaltern - technische Daten

Die FEMA-Druckschalter der Baureihen **DCM** (ausgenommen DCM1000, DCM4016 und DCM4025), **VCM** (ausgenommen VCM4156), **VNM** können mit 2 Mikroschaltern ausgestattet

Bei allen anderen Typenreihen und bei Ex-Ausführungen ist dies nicht möglich.

Technische Daten

Grundausstattung

Zur Grundausstattung eines jeden zweistufigen Druckschalters gehört ein Schaltgerät mit 2 Mikroschaltern, jeweils einpolig umschaltend. Mit Schalter I wird der niedrige, mit Schalter II der höhere Druck überwacht. Die in den Datenblättern der Grundtypen vermerkten Einstellbereiche bleiben auch bei zweistufigen Druckschaltern voll erhalten. Es ist zu beachten, dass die Schaltdifferenzen der einzelnen Mikroschalter aufgrund der Bauteiletoleranzen nicht exakt gleich sein können.

Schaltabstand

Der Schaltabstand (Intervall) der beiden Mikroschalter ist der Abstand (in bar oder mbar) zwischen den Schaltpunkten der beiden Mikroschalter. Der Schaltabstand für ZF307 kann zwischen 0 bar (parallel schaltend) und dem maximalen Schaltabstand (siehe Tabelle, S. 31) liegen. Dieser muss in der Bestellung zwingend angegeben werden. Die möglichen Schaltabstände (min. und max.) für ZF217 sind der Tabelle, S. 31 zu entnehmen.

Beispiel für ZF307:

Ein zweistufiger Druckschalter schaltet bei steigendem Druck (z.B. 2,8 bar) eine Warnleuchte ein, bei weiter steigendem Druck (z.B. 3,2 bar) wird die Anlage abgeschaltet. Der Schaltabstand ist 3,2–2,8 = 0,4 bar. Für alle Ausführungen gilt: Der Schaltabstand bleibt über den gesamten Einstellbereich des Druckschalters konstant. Bei Veränderungen an der Stellspindel zur Schaltdruckeinstellung verändert sich der Schaltabstand nicht, die Schaltpunkte werden parallel verschoben.

Schaltdifferenz

Die Schaltdifferenz, d. h. die Hysterese der einzelnen Mikroschalter entspricht den in der Typenübersicht genannten Werten der jeweiligen Grundausführung. Bei zweistufigen Druckschaltern ist die Schaltdifferenz der einzelnen Mikroschalter nicht einstellbar.

Gerätevarianten

Zweistufige Druckschalter sind in 2 verschiedenen Varianten lieferbar, die jeweils mit einer ZF-Nr. gekennzeichnet sind

Die Varianten unterscheiden sich durch unterschiedliche Anschlusspläne und durch den elektrischen Anschluss (Klemmen- oder Steckanschluss). Die technischen Daten der zweistufigen Druckschalter enthält das jeweils gültige Datenblatt für die Grundtypen. Dies gilt für sämtliche Einsatzgrenzen, wie Temperatur, max. Druck, Einbaulage, Schutzart, elektrische Daten usw. Auch die Hauptabmessungen entsprechen den einstufigen Druckschaltern mit vergleichbaren Druckbereichen und Ausführungsformen.

Zusatz- funktion	Schaltabstand zwischen beiden Mikroschaltern	Elektrischer Anschluss	Anschluss- schaltbild	Notwendige Bestellangaben
ZF307	Werkseinstellung nach Kunden- angaben Schaltabstand fest	Klemmenanschluss (alle Anschlüsse der beiden Mikroschalter sind zugänglich, 6 Klemmen)	2 x einpolig umschaltbar	Schaltpunkte I und II, jeweils mit Wirkungsrichtung (steigender oder fallender Druck) Beispiel: DCM16-307 Schaltpunkt I: 10 bar fallend Schaltpunkt II: 12 bar fallend oder nur Schaltabstand.
ZF217	Einstellbar an Stellrad I und II nach Tabelle "Schaltabstände"	Steckanschluss nach DIN EN175301 (3polig + Schutzleiter) Funktionsgerechte interne Verdrahtung nach Tabelle "Schaltschemen"	Beispiel Auswahl nach Tabelle Schaltschemen Seite 32.	1. Grundtype mit ZF217 2. Schaltschema Beispiel: DCM16-217/B 4 Da alle Werte im Rahmen der vorgegebenen Grenzen einstellbar sind, werden keine weiteren Angaben benötigt.

Bestellhinweis für Zusatzfunktion ZF217

Schaltschema	Schaltgerät	Bestellposition	Zusatztext
A1	А	DCM6-217A-S	Schaltschema A1
A2	С	DCM6-217C-S	Schaltschema A2
A3	С	DCM6-217C-S	Schaltschema A3
A4	Α	DCM6-217A-S	Schaltschema A4
B1	В	DCM6-217B-S	Schaltschema B1
B2	D	DCM6-217D-S	Schaltschema B2
B3	D	DCM6-217D-S	Schaltschema B3
B4	В	DCM6-217B-S	Schaltschema B4
C1	В	DCM6-217B-S	Schaltschema C1
C2	D	DCM6-217D-S	Schaltschema C2
C3	D	DCM6-217D-S	Schaltschema C3
C4	В	DCM6-217B-S	Schaltschema C4
D1	A	DCM6-217A-S	Schaltschema D1
D2	С	DCM6-217C-S	Schaltschema D2
D3	С	DCM6-217C-S	Schaltschema D3
D4	A	DCM6-217A-S	Schaltschema D4

Typenreihe S2 (Auswahl)

Druckschalter mit 2 Mikroschaltern ZF217 und ZF307 und Schaltabstände

Schaltabstände der zweistufigen Druckschalter (ZF217, ZF307)

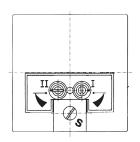
Typenreihe S2 ZF217 ZF307			höherer	<u> </u>	I		tieferer E	
Тур	min. Sci Voreins im Werk	•	Schalt A1/A3	tschema /B2/B4 s/D2/D4	Schalt	Mittelwerte sschema /C2/C4	Schalt	zF307) schema /D1/D3
DCM06	40	mbar		mbar		mbar		mbar
DCM025	20	mbar	140	mbar	160	mbar	120	mbar
DCM1	40	mbar	240	mbar	280	mbar	200	mbar
DCM3	0,1	bar	0,65	bar	0,75	bar	0,55	bar
DCM6	0,15	bar	0,95	bar	1,2	bar	0,8	bar
DCM10	0,25	bar	1,6	bar	1,85	bar	1,35	bar
DCM16	0,3	bar	2,0	bar	2,3	bar	1,7	bar
DCM25	0,6	bar	4,0	bar	4,6	bar	3,4	bar
DCM40	0,9	bar	6,0	bar	6,9	bar	5,1	bar
DCM63	1,3	bar	8,5	bar	9,8	bar		bar
DNM025	35	mbar	215	mbar	240	mbar		mbar
VCM095	40	mbar	300	mbar	340	mbar	260	mbar
VCM101	40	mbar	260	mbar	300	mbar	220	mbar
VCM301	20	mbar	100	mbar	120	mbar	80	mbar
VNM111	50	mbar	310	mbar	360	mbar	260	mbar

Schaltgeräte mit einstellbarem Schaltabstand

Zusatzfunktion ZF217

Beim Schaltgerät mit Zusatzfunktion ZF217 ist der Schaltabstand an 2 von außen zugänglichen Stellrädern I und II stufenlos einstellbar. Die maximal möglichen Schaltabstände sind in der Tabelle "Schaltabstände" angegeben.

Rechtsdrehung am Stellrad I – niedriger Schaltpunkt bei Mikroschalter I.

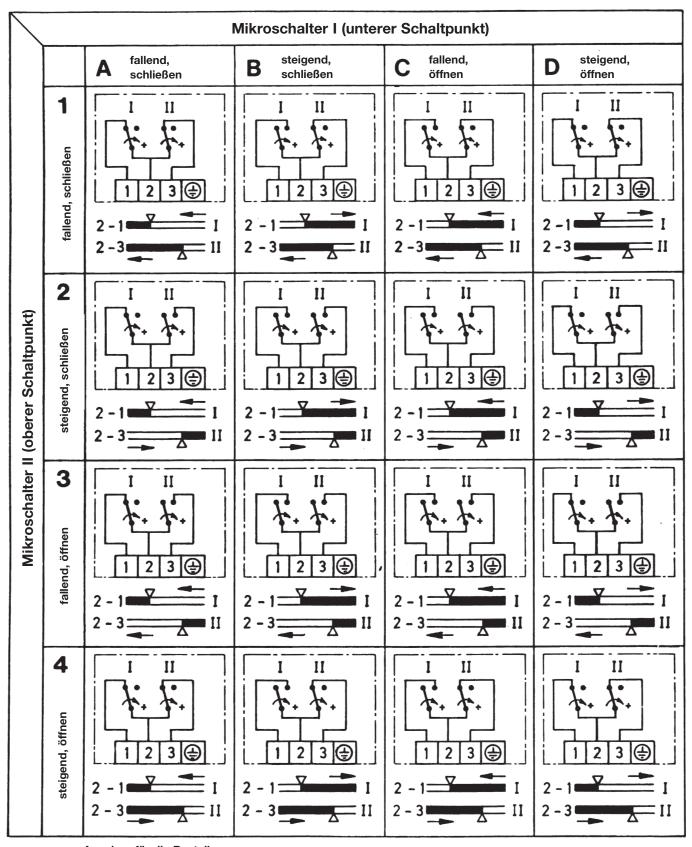

Linksdrehung am Stellrad II - höherer Schaltpunkt bei Mikroschalter II.

Die Stellräder I und II haben einen internen Anschlag, damit die Mikroschalter nicht über den wirksamen Bereich hinaus verstellt werden können.

Die Addition der Verstellung an den Stellrädern I und II ergibt den Schaltabstand zwischen den beiden Mikroschaltern. Änderungen an der Sollwertspindel beeinflussen den Schaltabstand nicht, der Schaltabstand bleibt über den gesamten Einstellbereich der Spindel konstant, die beiden Schaltpunkte werden parallel nach unten oder oben verschoben.

Empfehlung für die Einstellung bei Schaltgeräten mit ZF217

- Stellräder I und II in Grundstellung bringen.
 Stellrad I nach links drehen bis Anschlag.
 Stellrad II nach rechts drehen bis Anschlag.
- 2. Sollwertspindel **S** nach Skala auf einen Wert einstellen, der in der Mitte zwischen dem gewünschten oberen und dem gewünschten unteren Schaltpunkt liegt.
- 3. Bei anliegendem Druck mit Stellrad I den unteren Schaltpunkt einstellen.
- 4. Sinngemäß wie Punkt 3 mit Stellrad II oberen Stellpunkt einstellen.
- 5. Falls der gewünschte obere und untere Schaltpunkt nicht erreicht werden kann, Sollwertspindel **S** in die jeweilige Richtung nachstellen und die Einstellung nach Punkt 3 und 4 wiederholen.



Typenreihe S2

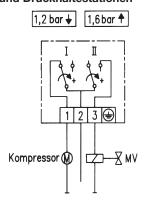
Zweistufige Druckschalter-Schaltschemen für ZF217

Funktionsgerechte interne Verschaltung der Mikroschalter I und II, Auswahltabelle der Schaltschemen. Die gezeichnete Schalterstellung entspricht dem drucklosen Zustand. Auf der waagrechten Achse ist die Schaltfunktion von Mikroschalter I (A–D), auf der senkrechten Achse die Schaltfunktion von Mikroschalter II (1–4) aufgetragen. Im Schnittpunkt ist das Schaltschema zu finden, das beide Bedingungen erfüllt (z.B. A 2).

Angaben für die Bestellung:

Außer der Grundtype (z. B. DCM10) und dem Schaltschema (z.B. A 2), sind bei Werkseinstellung noch die Schaltpunkte und die Wirkungsrichtung anzugeben:

Beispiel: DCM10-217C-S, Schaltschema: A2, Schalter I: 6,5 bar fallend, Schalter II: 7,5 bar steigend.



Typenreihe S2

Anwendungsbeispiele für zweistufige Druckschalter

Druckwächter mit zwei eingebauten Mikroschaltern, die bei steigendem oder fallendem Druck nacheinander zum Umschalten gebracht werden, können die Überwachung und Steuerung von Drücken erheblich vereinfachen. Beispielsweise sind Minimaldruck- und Maximaldrucküberwachung mit nur **einem** Druckschalter zu realisieren, der sonst notwendige zweite Druckschalter (einschließlich des Installationsaufwands) entfällt. Natürlich sind auch Stufenschaltungen, z.B. die druckabhängige Steuerung einer zweistufigen Pumpe, mit einem Druckschalter dieser Sonderbaureihe möglich.

Druckabhängige Steuerung von Druckausdehnungsautomaten und Druckhaltestationen

Beispiel 1:

Aufgabenstellung

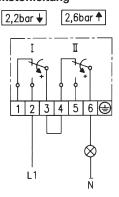
Druckhaltegefäße und Druckausdehnungsautomaten verfügen in der Regel über ein Gaspolster, dessen Druck in einem bestimmten Bereich konstant gehalten werden muss. Bei zu niedrigem Druck ist ein Kompressor einzuschalten, bei zu hohem Druck muss ein Magnetventil zum Abblasen geöffnet werden. Dazwischen befindet sich eine neutrale Zone, in der Kompressor und Magnetventil in Ruhestellung sind.

Lösung

Geeignet sind alle Druckschalter der Typen DCM, jeweils mit Zusatzfunktion ZF217 und Schaltschema A 2. Alle in den technischen Unterlagen aufgeführten Druckbereiche sind möglich. Beispiel für die Bestellung: s. Seite 32

Schaltfunktion/Anschlussplan

Schalter I: Bei fallendem Druck schließt Kontakt 1-2 (Kompressor ein).


Bei steigendem Druck öffnet Kontakt 1-2 (Kompressor aus).

Schalter II: Bei steigendem Druck schließt Kontakt 2-3 (Ventil auf).

Bei fallendem Druck öffnet Kontakt 2-3 (Ventil zu).

Dazwischen liegt eine neutrale Zone, in der weder der Kompressor eingeschaltet, noch die Magnetspule erregt ist (Ruhestellung).

Minimaldruck- und Maximaldrucküberwachung in einer Stickstoffleitung

Beispiel 2:

Aufgabenstellung

In einer verfahrenstechnischen Anlage ist der Druck in einer Stickstoffleitung zu überwachen. Durch eine grüne Signallampe soll angezeigt werden, ob der Druck in der Leitung zwischen 2,2 und 2,6 bar liegt. Werden 2,2 bar unterschritten oder 2,6 bar überschritten, soll die Anzeigelampe erlöschen bzw. die Anlage abgeschaltet werden.

l ösuna

Der erste Kontakt eines Druckschalters DCM3-307 mit 2 Mikroschaltern öffnet bei fallendem Druck bei 2,2 bar, der zweite Mikroschalter öffnet bei steigendem Druck bei 2,6 bar. Liegt ein Druck >2,2 bar und <2,6 bar an, ist der Stromkreis über beide Mikroschalter geschlossen, die Signallampe leuchtet.

Flüssigkeiten und Gase

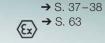
DCM025

DCM/DNM

Mechanischer Druckschalter

Dieser Universaldruckschalter ist sowohl im allgemeinen Maschinenbau und der Druckmaschinenindustrie einsetzbar, als auch in der Pneumatik und Hydraulik.

Flüssigkeiten und Gase



DNS6-351

DNS/VNS

Druck- und Vakuumschalter mit Edelstahl-Sensor (1.4571)

Für die Überwachung und Regelung von Drücken in Anlagen der chemischen Industrie, der Verfahrenstechnik und überall dort, wo der Druck von aggressiven Flüssigkeiten und Gasen überwacht werden muss, eignen sich die Druckschalter der Baureihe DNS. Alle Einzelteile des Fühlersystems bestehen aus hochwertigem Edelstahl (1.4571) und sind mit modernsten Verfahren ohne Zusatzwerkstoffe verschweißt. Der Druckfühler ist hermetisch gekapselt und enthält keinerlei Dichtungswerkstoffe.

Flüssigkeiten und Gase

DDCM

Differenzdruckschalter

Die FEMA-Differenzdruckwächter eignen sich zur Überwachung und Regelung von Differenzdrücken, zur Strömungsüberwachung und zur automatischen Kontrolle von Filteranlagen. Ein Doppelkammersystem mit Nirostahl-Balg bzw. Perbunan-Membrane erfasst den Unterschied der beiden anstehenden Drücke. Der gewünschte Schaltdruck kann innerhalb der in der Typenübersicht genannten Bereiche stufenlos eingestellt werden. Alle Differenzdruckwächter sind auch im Unterdruckbereich einsetzbar. Die Schaltdifferenz ist nicht einstellbar.

Flüssigkeiten und Gase

VCM/VNM

Unterdruckschalter (Vakuumschalter)

Die FEMA-Unterdruckschalter erfassen den Druckunterschied gegenüber dem Atmosphärendruck. Alle Angaben über Schaltdruckbereiche und damit auch die Skaleneinteilungen an den Schaltgeräten sind deshalb als Druckdifferenz zwischen dem jeweiligen Atmosphärendruck und dem eingestellten Schaltdruck zu verstehen. Der Bezugspunkt "Null" auf der Geräteskala entspricht dem jeweiligen Atmosphärendruck.

→ S. 40

10 Kriterien für die richtige Auswahl

CHECKLISTE

1	Medium	Dampf, Heißwasser, Brenngase, Luft, Rauchgase, Flüssiggas, flüssige Brennstoffe, andere Medien
1a	Sensorwerkstoff	Edelstahl, Buntmetalle, Kunststoffe (z.B. Perbunan). Sind alle Sensorwerkstoffe gegenüber dem Medium beständig? Öl- und fettfrei bei Sauerstoff?
2	Bauartzulassung	Ist für die vorgesehene Anwendung eine Bauartzulassung (TÜV, DVGW, ATEX, usw.) erforderlich?
0	Fundation	Wächter, Begrenzer. Druckbegrenzer
3	Funktion	in Sicherheitstechnik?
4	Wirkungsrichtung	Soll der Maximaldruck oder der Minimaldruck überwacht werden? Hat der Druckschalter eine
		Reglerfunktion (z.B. Pumpe ein und aus)?
5	Einstellbereich	Der gewünschte Einstellbereich ist aus den Typenübersichten zu entnehmen
		Einstellbare Schaltdifferenz ist nur bei Druckschalter
6	Schaltdifferenz nur bei Reglern/Wächtern	mit Reglerfunktion wichtig. Bei Begrenzerfunktionen ist die Schaltdifferenz (Hysterese) ohne
	riogion//wacmom	Bedeutung
7	Maximal zulässiger Betriebsdruck	Der in den Tabellen genannte max. zul. Betriebsdruck muss gleich oder größer dem max.
	Detriebadruek	Anlagendruck sein
8	Umgebungsbedingungen	Mediumstemperatur/Umgebungstemperatur/ Schutzart/Feuchtigkeit/Ex-Zone/Montage im
		Freien – Schutzmaßnahmen
9	Bauform/Größe Druckanschluss	Baugröße, Einbaulage, Montagemöglichkeit, Druckanschluss mit Dichtung
	2. askanoomass	
10	Elektrische Daten Schaltleistung	Schaltelement/Wechsler/Öffner/Schließer/ Schaltleistung/Verriegelung/Goldkontakte/
	-	kontaktlose Signalgabe

Diese Auflistung der Kriterien erhebt keinen Anspruch auf Vollständigkeit. Es müssen jedoch alle Punkte geprüft werden. Die vorgegebene Reihenfolge ist sinnvoll, jedoch nicht zwingend.

DCM/DNM

Druckschalter und Druckwächter für Überdruck

Dieser Universaldruckschalter ist sowohl im allgemeinen Maschinenbau und der Druckmaschinenindustrie einsetzbar, als auch in der Pneumatik und Hydraulik.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 54, bei senkrechter Einbaulage.

Werkstoffe der Druckfühler

DNM025DCM63	Metallbalg: 1.4571
	Fühlergehäuse: 1.4104
DCM025 - DCM1	Metallbalg: Cu
	Fühlergehäuse: Cu + Ms
DCM4016/	Membrane: Perbunan
DCM4025	Fühlergehäuse: 1.4301
DCM1000	Membrane: Perbunan
	Fühlergehäuse: Messing

Einbaulage

Senkrecht nach oben und waagrecht. DCM4016 und 4025 senkrecht nach oben.

Umgebungstemp. am Schaltgerät -25...+70 °C, Ausnahme: DCM4016, 4025, 1000: -15...+60 °C

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) oder an eine ebene Fläche mit 2 Schrauben 4 mm Ø.

Schaltdruck

Von außen mittels Schraubendreher einstellbar.

Schaltdifferenz

Bei Typen DCM nicht einstellbar. Bei Typen DCMV von außen einstellbar.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250 V ~		250 V-	24 V – (ohm)
	(OIIIII)	(IIIu)	(011111)	(- /
Normal	8 A	5 A	0,3 A	8 A

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässiger Druck	Medium- berührte Werkstoffe	Maß- zeich- nung		
	enz nicht einstellbar				S. 21+22		
DCM4016	116 mbar	0,7 3 mbar	1 bar	Perbunan	1 + 11		
DCM4025	425 mbar	1 3 mbar	1 bar	+ 1.4301			
DCM1000	10100 mbar	2 12 mbar	10 bar	Perbunan + MS	1 + 10		
DCM025	0,040,25 bar	10 30 mbar	6 bar	Cu + Ms			
DCM06	0,10,6 bar	10 50 mbar	6 bar	Cu + Ms	1 + 14		
DCM1	0,21,6 bar	20 60 mbar	6 bar	Cu + Ms			
DNM025	0,040,25 bar	20 40 mbar	6 bar		1 + 15		
DCM3	0,22,5 bar	60 140 mbar	16 bar	Sensor-			
DCM6	0,56 bar	0,14 0,26 bar	16 bar	gehäuse	1 + 18		
DCM625	0,56 bar	0,15 0,35 bar	25 bar	1.4104			
DCM10	110 bar	0,2 0,4 bar	25 bar	+	1 + 17		
DCM16	316 bar	0,2 0,6 bar	25 bar	Druck-			
DCM25	425 bar	0,3 1,1 bar	60 bar	balg			
DCM40	840 bar	0,4 1,6 bar	60 bar	1.4571	1 + 16		
DCM63	1663 bar	0,6 2,6 bar	130 bar				
DCM63-406	4075 bar	0,5 3,0 bar	130 bar				
Schaltdifferenz einstellbar							
DCMV025	0,040,25 bar	0,030,4 bar	6 bar				
DCMV06	0,10,6 bar	0,040,5 bar	6 bar	Cu + Ms	1 + 14		
DCMV1	0,21,6 bar	0,070,55 bar	6 bar				
DCMV3	0,22,5 bar	0,151,5 bar	16 bar	Sensor-			
DCMV6	0,56 bar	0,252,0 bar	16 bar	gehäuse	1 + 18		
DCMV625	0,56 bar	0,402,5 bar	25 bar	1.4104			
DCMV10	110 bar	0,52,8 bar	25 bar	+	1 + 17		
DCMV16	316 bar	0,73,5 bar	25 bar	Druck-			
DCMV25	425 bar	1,36,0 bar	60 bar	balg			
DCMV40	840 bar	2,26,6 bar	60 bar	1.4571	1 + 16		
DCMV63	1663 bar	3,010 bar	130 bar				

Bei kleineren Druckbereichen siehe auch Blatt VCM, DGM, HCD und DPS. Zusatzfunktionen siehe S. 26-28

Justierung

Die Baureihe **DCM** ist bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

Schutzart:

(Ex)-DCM/DNM siehe Seite 62

CE

DNS/VNS

Druck- und Vakuumschalter mit Edelstahl-Sensor (1.4571)

Für die Überwachung und Regelung von Drücken in Anlagen der chemischen Industrie, der Verfahrenstechnik und überall dort, wo der Druck von aggressiven Flüssigkeiten und Gasen überwacht werden muss, eignen sich die Druckschalter der Baureihe DNS. Alle Einzelteile des Fühlersystems bestehen aus hochwertigem Edelstahl (1.4571) und sind mit modernsten Verfahren ohne Zusatzwerkstoffe verschweißt. Der Druckfühler ist hermetisch gekapselt und enthält keinerlei Dichtungswerkstoffe.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 54, bei senkrechter Einbaulage.

Werkstoffe der Druckfühler

Druckbalg und alle mediumsberührten Teile. X 6 Cr Ni Mo Ti 17122 Werkstoff-Nr. 1.4571

Einbaulage

Senkrecht nach oben und waagrecht.

Max. Umgebungstemperatur am Schaltgerät

–25…+70 °C.

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Schaltdruck

Von außen mittels Schraubendreher verstellbar.

Schaltdifferenz

Werte siehe Typenübersicht.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250	٧ ~	250 V-	24 V –	
Containicistang	(ohm)	(ind)	(ohm)	(ohm)	
Normal	8 A 5 A		0,3 A	8 A	

Kunststoffbeschichtung

Das Alu-Druckgussgehäuse aus GD Al Si ist chromatiert und mit beständigem Kunststoff einbrennlackiert. Korrosionstests mit 3 %-iger Salzlösung und 30 Temperaturwechseln von +10 bis +80 °C zeigten nach 20 Tagen keinerlei Veränderungen der Oberfläche.

Typenübersicht

Туре	Einstellbere	eich	Schaltdifferenz (Toleranzspanne)	Max. zulässiger Druck	Maß- zeich- nung
Schaltdifferer	nz nicht eins	tellbar			S. 21+22
VNS301-201	-250+100	mbar	30 60 mbar	3 bar	
VNS111-201	-1*+0,1	bar	30 70 mbar	6 bar	
DNS025-201	0,040,25	bar	20 40 mbar	6 bar	1 + 15
DNS06-201	0,10,6	bar	10 50 mbar	6 bar	
DNS1-201	0,21,6	bar	40 80 mbar	6 bar	
DNS3-201	0,22,5	bar	60 140 mbar	16 bar	
DNS6-201	0,56	bar	0,07 0,23 bar	16 bar	1 + 18
DNS10-201	110	bar	0,2 0,4 bar	16 bar	
DNS16-201	316	bar	0,3 0,7 bar	25 bar	1 + 17
Schaltdifferer	nz einstellbai	r			
VNS111-203	−1*+0,1	bar	90 – 550 mbar	6 bar	1 + 15
DNS06-203	0,10,6	bar	80 - 600 mbar	6 bar	
DNS3-203	0,22,5	bar	0,15 - 1,5 bar	16 bar	4 40
DNS6-203	0,56	bar	0,25 - 2,0 bar	16 bar	1 + 18
DNS10-203	110	bar	0,5 - 2,5 bar	16 bar	
DNS16-203	316	bar	0,8 - 3,5 bar	25 bar	1 +17

^{*} Bei Vakuum, nahe dem nur theoretisch möglichen Unterdruck von -1 bar, ist der Schalter wegen der besonderen Anforderungen der Vakuumtechnik nicht einstetzbar. Alle Druckschalter, auch die für Überdruck, können an Vakuum anliegen, die Geräte werden dadurch nicht beschädigt.

Chemieausführung (Gehäuse mit Kunststoffbeschichtung)

Schaltgehäuse mit Oberflächenschutz (chromatiert und einbrennlackiert). Schutzart IP 65. Siehe Seite 38

Justierung

Die Baureihen **DNS** und **VNS** sind bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

Schutzart:

DNS/VNS

Druck- und Vakuumschalter mit Edelstahl-Sensor (1.4571)

Chemieausführung (Gehäuse mit Kunststoffbeschichtung)

Schaltgehäuse mit Oberflächenschutz (chromatiert und einbrennlackiert). Schutzart IP 65.

Die mit dem Medium in Verbindung stehenden Teile der Fühlersysteme bestehen aus Werkstoff 1.4571.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (300) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 65, bei senkrechter Einbaulage.

Werkstoffe der Druckfühler

Druckbalg und alle mediumsberührten Teile. X 6 Cr Ni Mo Ti 17122 Werkstoff-Nr. 1.4571

Einbaulage

Senkrecht nach oben und waagrecht.

Max. Umgebungstemperatur am Schaltgerät

−25...+70 °C.

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) an eine ebene Fläche mit 2 Schrauben, 4 mm ø

Schaltdruck

Von außen mittels Schraubendreher verstellbar.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250 V ~			24 V –
Containing	(ohm)	(ind)	(ohm)	(ohm)
Normal	8 A	5 A	0.3 A	8 A

Kunststoffbeschichtung

Das Alu-Druckgussgehäuse aus GD Al Si ist chromatiert und mit beständigem Kunststoff einbrennlackiert. Korrosionstests mit 3 %-iger Salzlösung und 30 Temperaturwechseln von +10 bis +80 °C zeigten nach 20 Tagen keinerlei Veränderungen der Oberfläche.

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässiger Druck	Maß- zeich- nung
Schaltdiffere	nz nicht einstellbar			S. 21+22
VNS301-351	-250+100mbar	30 60mbar	3bar	
VNS111-351	-1*+0,1bar	30 70mbar	6bar	
DNS025-351	0,040,25bar	20 40mbar	6bar	2 + 15
DNS06-351	0,10,6bar	10 50mbar	6bar	
DNS1-351	0,21,6bar	40 80mbar	6bar	
DNS3-351	0,22,5bar	60 140mbar	16bar	2 + 18
DNS6-351	0,56bar	0,07 0,23bar	16bar	2 + 10
DNS10-351	110bar	0,2 0,4bar	16bar	2 + 17
DNS16-351	316bar	0,3 0,7bar	25bar	Z + 11

^{*} Bei Vakuum, nahe dem nur theoretisch möglichen Unterdruck von -1 bar, ist der Schalter wegen der besonderen Anforderungen der Vakuumtechnik nicht einsetzbar. Alle Druckschalter, auch die für Überdruck, können an Vakuum anliegen, die Geräte werden dadurch nicht beschädigt.

Justierung

Die Baureihen **DNS** und **VNS** sind bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

DDCM

Differenzdruckschalter

Die FEMA-Differenzdruckwächter eignen sich zur Überwachung und Regelung von Differenzdrücken, zur Strömungsüberwachung und zur automatischen Kontrolle von Filteranlagen. Ein Doppelkammersystem mit Nirostahl-Balg bzw.

SAFETY

Perbunan-Membrane erfasst den Unterschied der beiden anstehenden Drücke. Der gewünschte Schaltdruck kann innerhalb der in der Typenübersicht genannten Bereiche stufenlos eingestellt werden. Alle Differenzdruckwächter sind auch im Unterdruckbereich einsetzbar. Die Schaltdifferenz ist nicht einstellbar.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Innengewinde G 1/4

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss

Schutzart

IP 54, bei senkrechter Einbaulage.

Werkstoffe der Druckfühler

DDCM014-16: Druckbalg aus 1.4571 Fühlergehäuse aus 1.4305. DDCM252-6002: Membrane aus Perbunan. Fühlergehäuse aus Aluminium.

Einbaulage

senkrecht nach oben.

Umgebungstemperatur am Schaltgerät -25...+70 °C

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Kurzzeitig einwir-kende Temperaturen bis 85 °C sind zulässig Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung oder an eine ebene Fläche mit 2 Schrauben, 4 mm ø. Anschluss der druckführenden Leitungen

beachten: P(+) = hoher Druck

S (-) = niedriger Druck

Schaltdruck

Von außen mittels Schraubendreher einstellbar.

Schaltdifferenz

Nicht einstellbar.

Schaltleistung	250 V ~		250 V-	24 V –
	(ohm) (ind)		(ohm)	(ohm)
Normal	8 A	5 A		8 A

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max.** zulässiger Druck	Medium- berührte Werkstoffe	Maß- zeich- nung
Schaltdiffere	nz nicht einstellba	r			S. 21+22
DDCM252*	425mbar	0,7 4mbar	0,5bar		
DDCM662*	1060mbar	2 23mbar	1,5bar	Aluminium	1 + 20
DDCM1602*	20160mbar	2 20mbar	3bar	+ Perbunan	
DDCM6002*	100600mbar	2 40mbar	3bar		
DDCM014	-0,10,4bar	50 180mbar	15bar		
DDCM1	0,21,6bar	80 180mbar	15bar	Edelstahl	
DDCM4*	14bar	0,1 0,3bar	25bar	1.4305 +	
DDCM6	0,56bar	0,1 0,3bar	15bar	1.4571	1 + 21
DDCM16	316bar	0,2 0,8bar	25bar		

- * keine Skaleneinteilung (nur ± Skala)
- ** auch einseitig belastbar

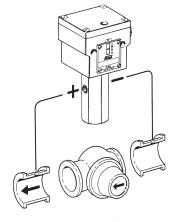
Weitere Differenzdruckwächter siehe Baureihe HCD und DPS, s. S. 68 bzw. 69

± Zubehör: · Verschraubung mit Einschraubnippel G 1/4"/8 mm MAU8/Ms und MAU8/Nst, S. 145

· Ventilkombinationen VKD3 und VKD5, S. 144

Justierung

Die Baureihe DDCM ist bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)


Anwendungsbeispiel Pumpenüberwachung

Der Differenzdruckschalter (z. B. DDCM1) überwacht den Differenzdruck über die Pumpe. Bei Unterschreiten einer einstellbaren Schaltschwelle wird abgeschaltet. Die Pumpenüberwachung ist unabhängig vom statischen Druck in der Anlage.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

VCM/VNM

Unterdruckschalter (Vakuumschalter)

Die FEMA-Unterdruckschalter erfassen den Druckunterschied gegenüber dem Atmosphärendruck. Alle Angaben über Schaltdruckbereiche und damit auch die Skaleneinteilungen an den Schaltgeräten sind deshalb als Druckdifferenz zwischen dem jeweiligen Atmosphärendruck und dem eingestellten Schaltdruck zu verstehen. Der Bezugspunkt "Null" auf der Geräteskala entspricht dem jeweiligen Atmosphärendruck.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 54, bei senkrechter Einbaulage.

Werkstoffe der Druckfühler

VNM111 und Metallbalg: 1.4571 VNM301: Fühlergehäuse: 1.4104 VCM095, 101 Metallbalg aus Cu Zn und 301: Fühlergehäuse aus CuZn VCM4156: Membrane aus Perbunan Fühlergehäuse: 1.4301

Einbaulage

Senkrecht nach oben und waagrecht. VCM4156 senkrecht nach oben.

Umgebungstemp. am Schaltgerät

−25...+70 °C

Ausnahme: VCM4156: -15...+60 °C

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Um-gebungstemperatur am Schaltgerät sein. Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) oder an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Schaltdruck

Von außen mittels Schraubendreher einstellbar.

Schaltdifferenz

Bei Typen VCM nicht einstellbar. Bei Typen VCMV einstellbar. Werte siehe Typenübersicht.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250 V ~		250 V-	24 V –
	(ohm) (ind)		(ohm)	(ohm)
Normal	8 A	5 A	0,3 A	8 A

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)		Max. zulässiger Druck		Maß- zeich- nung
Schaltdiffer	enz nicht einstellbar					S. 21+22
VCM4156	-15+6mbar	0,7 3	mbar	1	bar	1 + 11
VCM301	-250+100mbar	10 35	mbar	1,5	bar	1 + 13
VNM301	-250+100mbar	10 60	mbar	3	bar	1 + 15
VCM101	-1*+0,1bar	30 60	mbar	3	bar	1 + 14
VCM095	-0,9+0,5bar	35 65	mbar	3	bar	1 + 14
VNM111	-1*+0,1bar	30 70	mbar	6	bar	1 + 15
Schaltdiffer	enz einstellbar					
VCMV301	-250+100mbar	30 – 200	mbar	1,5	bar	1 + 13
VCMV101	-1*+0,1bar	80 - 350	mbar	3	bar	1 + 14
VCMV095	-0,9+0,5bar	90 – 400	mbar	3	bar	1 + 14
VNMV301	-250+100mbar	70 – 500	mbar	3	bar	1 + 15
VNM111	-1*+0,1bar	90 - 650	mbar	6	bar	1 + 15

* Bei sehr hohem Vakuum, nahe dem nur theoretisch möglichen Unterdruck von –1 bar, ist der Schalter wegen der besonderen Bedingungen der Vakuumtechnik nur unter Vorbehalt einsetzbar. Der Druckschalter selbst wird bei maximalem Unterdruck jedoch nicht beschädigt.

Zusatzfunktionen siehe S. 26-28.

Kleinere Druckbereiche siehe auch Datenblatt HCD und DPS, s. S. 68 bzw. 69.

Justierung

Die Baureihen **VCM** und **VNM** sind bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

Ex -VCM/VNM siehe Seite 65

Prüfung nach DG-Richtlinie 2014/68/EU

Eingestuft nach SIL

DWAM1

DWAM, DWAMV, SDBAM

Druckwächter / Druckbegrenzer

Diese Baureihen sind speziell geeignet für die Maximaldrucküberwachung in Dampfund Heißwasseranlagen. Es handelt sich um Druckschalter "besonderer Bauart" mit selbstüberwachendem Drucksensor, gebaut nach Druckgeräterichtlinie 2014/68/EU. Sie sind einsetzbar als Druckwächter oder Druckbegrenzer für Maximaldrucküberwachung (Anlagen nach TRD 604 und nach DIN EN12828) und lieferbar mit oder ohne Differenzverstellung.

→ S. 49

Eingestuft nach SIL

DWAM6-576

DBS

Druckwächter / Druckbegrenzer

Die Druckbegrenzer in Sicherheitstechnik bieten gegenüber den normalen Druckschaltern in vielen Punkten ein höheres Maß an Sicherheit und sind deshalb besonders für Anlagen der chemischen Verfahrenstechnik und der Wärmetechnik geeignet, bei denen besonders auf Sicherheit bei der Drucküberwachung Wert gelegt werden muss. Die Druckschalter sind auch in Ex-Bereichen (Zone 0, 1, 2 und 20, 21, 22) einsetzbar und benötigen in jedem Fall einen Trennschaltverstärker. Der Trennschaltverstärker ist auch für die Überwachung der Leitungen auf Kurzschluss und Leitungsbruch zuständig und bietet deshalb – auch in Nicht-Ex-Bereichen – einen zusätzlichen Sicherheitsvorteil. Bei Ex-Anwendungen muss der Trennschaltverstärker außerhalb der Ex-Zone installiert werden. Die Leitungen zwischen Trennschaltverstärker und dem Druckschalter werden auf Kurzschluss und Leitungsbruch überwacht.

→ S. 50 – 52

Prüfung nach DG-Richtlinie 2014/68/EU

Eingestuft nach SIL

FD16-326

FD

Maximaldruckbegrenzer für Flüssiggasanlagen

Die Druckbegrenzer der Reihe FD sind nach den speziellen Richtlinien der Flüssiggastechnik gebaut. Alle mit dem Medium in Verbindung stehenden Teile bestehen aus Edelstahl 1.4104 und 1.4571. Der Drucksensor ist "selbstüberwachend" ausgeführt, d. h. bei Bruch des Meßbalgs schaltet der Druckbegrenzer nach der sicheren Seite ab. Der Druckfühler entspricht damit der "besonderen Bauart" im Sinne des VdTÜV-Merkblatts "Druck 100". Die Druckbegrenzer werden in eigensicheren Steuerstromkreisen (Ex-Schutzart Ex-i) betrieben. Durch Verwendung eines Trennschaltverstärkers wird der Steuerstromkreis zusätzlich auf Unterbrechung und Kurzschluss überwacht. → S. 53

Prüfung nach ATEX 2014/34/EU Prüfung nach RL 2009/142/EG

Eingestuft nach SIL

DGM

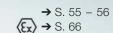
Druckwächter für Brenngase

DVGW-geprüft nach DIN EN1854: 2006. Die Gasdruckwächter sind für alle Gase nach DVGW-Arbeitsblatt G 260 und für Luft geeignet.

DGM310A

Prüfung nach DGR 2014/68/EU Prüfung nach ATEX 2014/34/EU

Eingestuft nach SIL



DWR

Druckwächter / Druckbegrenzer

Besonders geeignet als Druckwächter oder Druckbegrenzer für Brenngase (DVGW-Arbeitsblatt G 260) nach DIN EN1854 und flüssige Brennstoffe (z.B. Heizöl) sowie für Dampfanlagen nach TRBS und Heißwasser Anlagen nach DIN EN12828. Der DWR dient der Maximaldruck- und Minimaldrucküberwachung. Dieser Druckschalter nach "besonderer Bauart" verfügt über eine Prüfung mit 2 Mio. Schaltspielen.

DWR625

TÜV

Begriffe und Information

Die Drucküberwachung und Druckbegrenzung in

- · Dampfkesseln
- · Fernheizungen
- · Ölleitungen
- · Flüssiggasanlagen
- · Heißwasser-Heizsystemen

Druckschalter "besonderer Bauart"

- · Gasanlagen
- · Feuerungssystemen

ist von großer sicherheitstechnischer Bedeutung.

Bauteilprüfung

Drucküberwachungsgeräte für sicherheitsrelevante Anwendungen müssen zuverlässig arbeiten und nach den jeweils relevanten Richtlinien geprüft sein. Die Zuverlässigkeit der Druckwächter und Druckbegrenzer muss durch eine Bauteilprüfung nachgewiesen werden, die durch die jeweils zuständigen Prüfstellen (z.B. TÜV und DVGW) durchgeführt wird. Der folgende Teil enthält das FEMA-Produktionsprogramm für sicherheitstechnisch relevante Drucküberwachung in wärmetechnischen und verfahrenstechnischen Anlagen.

Besondere Bauart

Die Wortschöpfung "besondere Bauart" stammt aus dem VdTÜV-Merkblatt DRUCK 100, Ausg. 07.2006, in dem die Anforderungen an Druckwächter und Druckbegrenzer für Dampfkessel und Heißwasseranlagen festgelegt sind. Ursprünglich nur für Drucküberwachung im Dampf- und Heißwasserbereich verwendet, wird das Merkmal "besondere Bauart" mehr und mehr als Qualitäts- und Sicherheitsargument auch für andere Anwendungen übernommen. Der folgende Teil beschreibt die Anforderungen an Druckbegrenzer "besonderer Bauart". Anhand von sicherheitstechnischen Analysen werden Empfehlungen für die richtige Auswahl von Druckbegrenzern gegeben.

Definitionen des VdTÜV-Merkblatts DRUCK 100:

Druckwächter (DW)

Druckwächter sind Geräte, die die Beheizung bei Über- und / oder Unterschreiten eines fest eingestellten Druckgrenzwerts abschalten und die Beheizung erst nach Druckänderung wieder freigeben.

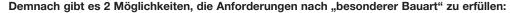
Druckbegrenzer (DB)

Druckbegrenzer sind Geräte, die die Beheizung bei Über- und / oder Unterschreiten eines fest eingestellten Druckgrenzwerts abschalten und gegen selbsttätiges Einschalten verriegeln.

Druckbegrenzer besonderer Bauart (SDB)

Druckbegrenzer besonderer Bauart erfüllen die gleichen Aufgaben wie Druckbegrenzer. Sie müssen zusätzlich die Anforderungen an die erweiterte Sicherheit nach Abschnitt 3.4 (der DRUCK 100) erfüllen.

Gesicherter Zustand


Gemäß DIN VDE 0660, Teil 209, ist der gesicherte Zustand des Systems dann erreicht, wenn am Ausgangskontakt ein Ausschaltbefehl ansteht, das bedeutet, dass im sicheren Zustand der Mikroschalter im Druckbegrenzer betätigt (geöffnet) und der Steuerstromkreis unterbrochen ist. Nachgeschaltete Schaltglieder müssen in gleicher Weise reagieren. Die Betriebsart der Sicherheitsdruckbegrenzung entspricht damit dem **Ruhestromprinzip**.

Zusätzliche Anforderungen an Druckbegrenzer "besonderer Bauart"

Abschnitt 3.4 des VdTÜV-Merkblatts Druck 100:

Druckbegrenzer "besonderer Bauart" müssen bei Bruch im mechanischen Teil des Messwerks zu einer Abschaltung und Verriegelung der Beheizung führen. Diese Anforderung ist auch erfüllt, wenn der mechanische Teil des Messwerks auf schwingende Beanspruchung gerechnet ist oder eine Prüfung mit 2 Mio. Schaltspielen bestanden hat und die druckbeanspruchten Teile des Messwerks aus korrosionsbeständigen Werkstoffen bestehen.

(Verkürzter Auszug aus VDTÜV-Merkblatt DRUCK 100)

- a) Durch einen selbstüberwachenden Drucksensor, der so konstruiert ist, dass ein Bruch im mechanischen Teil des Messwerks zu einer Abschaltung nach der sicheren Seite führt (siehe Bild 1).
- b) Durch den Nachweis einer Dauerprüfung mit 2 Mio. Schaltspielen während der Bauteilprüfung (siehe Bild 2).

a) Selbstüberwachender Drucksensor mit Sicherheitsmembrane (nur für Maximaldrucküberwachung)

Bild 1 zeigt das Schnittbild eines Drucksensors, der die Anforderungen an besondere Bauart erfüllt. Die Messkammer ist begrenzt durch Gehäuse (1), Boden (2) und Messbalg (3). Alle Teile bestehen aus Nirostahl und sind miteinander ohne Zusatzwerkstoffe verschweißt. Bei steigendem Druck bewegt sich der Messbalg (3) nach oben, unterstützt durch die Gegendruckfeder (5). Als Gegenkraft wirkt die im Schaltgerät eingebaute Sollwertfeder. Auf der Innenseite des Bodens ist ein Übertragungsbolzen aufgelegt, der die druckabhängigen Bewegungen des Messbalgs (3) auf das darüberliegende Schaltwerk überträgt. Im oberen Teil des Übertragungsbolzens ist eine Kunststoffmembrane (7) eingespannt, die nicht mit dem Medium in Verbindung steht und im Normalbetrieb die Bewegungen des Messbalgs mitmacht, aber selbst keinen Einfluß auf die Stellung des Meßbalgs hat. Bei Bruch des Messbalgs (3) kann das Medium in den Innenraum des Balgs entweichen. Der Mediumsdruck liegt jetzt an der Unterseite der Membrane an (PL). Infolge der deutlich größeren wirksamen Fläche der Membrane gegenüber dem Messbalg wird eine zusätzliche Kraft erzeugt, die den Übertragungsbolzen (6) nach oben drückt. Dies führt zur Abschaltung nach der sicheren Seite. Der damit erreichte Abschaltzustand wird normalerweise elektrisch oder mechanisch verriegelt, sodass auch bei wieder fallendem Druck die Anlage abgeschaltet bleibt. Die Kunststoffmembrane (7) ist kein drucktragendes Teil, sie hat im Normalbetrieb keine Funktion und ist nur wirksam, wenn am Messbalg eine Leckage auftritt. Sicherheitsmembranen der beschriebenen Bauart sind bis 32 bar zulässig, dies dürfte für die meisten Anwendungen ausreichen.

b) Drucksensoren mit Nachweis von 2 Mio. Schaltspielen (DWR-Reihe)

Bei dieser Bauart geht man davon aus, daß die Drucksensoren, die während der Bauteileprüfung einer dynamischen Beanspruchung von 2 Mio. Schaltspielen standgehalten haben, als zuverlässige Elemente gelten können. Eine zusätzliche Sicherheitseinrichtung im Sensor haben sie nicht. Obwohl die Geräte mit größter Sorgfalt hergestellt und geprüft werden, können Maximaldruckbegrenzer ohne zusätzliche Sicherheitseinrichtung zu gefährlichen Zuständen führen, wenn durch Sekundäreinwirkungen Fehler auftreten, die bei den Prüfungen nicht zu erkennen sind. Ursache dafür können sein: Lochkorrosion durch abgelagerte Metallpartikel auf dem (meist sehr dünnwandigen) Balg des Drucksensors, Materialfehler im Druckbalg oder eine aufgebrochene Schweißnaht. Trotz sorgfältiger Herstellung und Prüfung: Ein Restrisiko bei Maximaldrucküberwachung bleibt bestehen. Letztlich muss der Anwender und Betreiber der Anlagen selbst entscheiden, mit welchem Grad von Sicherheit er seine Druckbehälter überwachen will.

Bei Minimaldrucküberwachung sind auch die Drucksensoren ohne Sicherheitsmembrane selbstüberwachend.

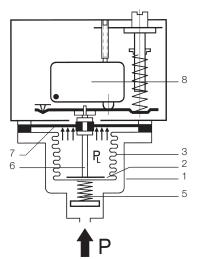


Bild 1 Selbstüberwachender Maximaldruckbegrenzer mit Sicherheitsmembrane DWAM..., DWAMV..., SDBAM...

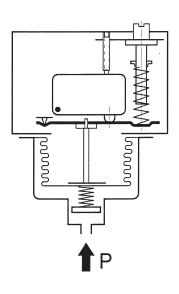


Bild 2 Druckbegrenzer ohne Sicherheitsmembrane (nicht selbstüberwachend bei Maximaldrucküberwachung) DWR...

Sicherheitsanalyse bei Maximaldrucküberwachung

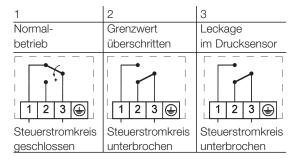
Wirkungsrichtung beachten

Die vorhergehende Beschreibung und die sicherheitsanalytische Betrachtung bezog sich auf die Überwachung des Maximaldrucks. Die sichere Seite heißt hier: Die Energiezufuhr abschalten (z.B. Brenner aus), um weiteren Druckanstieg zu vermeiden.

Eine völlig andere Betrachtung ist bei der Überwachung des Minimaldrucks notwendig. Die sichere Seite bedeutet hier: Vermeiden, dass der Druck weiter absinkt (Beispiel: Heißwasseranlagen mit Fremddruckhaltung oder Überwachung des Wasserstands in Heizungsanlagen). Die sicherheitstechnische Betrachtung gibt hier eindeutig dem Druckbegrenzer ohne Sicherheitsmembrane den Vorzug. Bei Leckage im Sensor wird "niedriger Druck" signalisiert, er schaltet nach der sicheren Seite um. Ein Drucksensor ohne Sicherheitsmembrane ist also "besondere Bauart" im Sinne des Merkblatts DRUCK 100, wenn er als Minimaldruckbegrenzer eingesetzt wird.

Umgekehrt muss man aus dieser Überlegung den Schluss ziehen, dass Drucksensoren mit Sicherheitsmembrane, die bei Maximaldrucküberwachung beachtliche Vorteile bieten, niemals für Minimaldrucküberwachung eingesetzt werden dürfen. Falsche Verwendung kann einen gefährlichen Zustand erzeugen. Für den Anwender und Planer gilt deshalb zwingend: Die Wirkungsrichtung ist bei der Auswahl der Druckbegrenzer zu beachten.

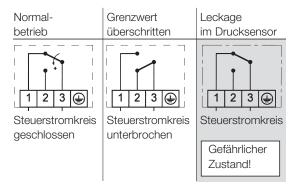
Zusammenfassend lässt sich festlegen:


Druckbegrenzer "besonderer Bauart" mit Sicherheitsmembrane (selbstüberwachender Drucksensor) bieten bei Maximaldrucküberwachung den höchsten Grad an Sicherheit. Für Minimaldrucküberwachung dürfen solche Geräte nicht eingesetzt werden. Druckbegrenzer "besonderer Bauart" mit Nachweis von 2 Mio. Schaltspielen sind bei Minimaldrucküberwachung auch ohne Sicherheitsmembrane selbstüberwachend, bei Maximaldrucküberwachung verbleibt jedoch ein Restrisiko.

Sicherheitsanalyse bei Maximaldrucküberwachung

Betrachtet man die Schalterstellungen bei den denkbaren Betriebszuständen, so wird der Unterschied der Drucksensoren in "besonderer Bauart" deutlich. Die linke Spalte zeigt jeweils den Normalbetrieb, bei dem der Schalter die Klemmen 3 und 1 verbindet. Der Abschaltzustand, bei zu hohem Druck, ist in Spalte 2 dargestellt, der Steuerstromkreis über die Klemmen 3 und 1 ist unterbrochen. Der Unterschied ergibt die sicherheitstechnische Betrachtung in Spalte 3, in der die Schalterstellung bei einer Leckage im Drucksensor dargestellt ist. Bei einem Sensor in Sicherheitstechnik wird der Steuerstromkreis unterbrochen, während bei einem Sensor ohne Sicherheitsmembrane der Steuerstromkreis geschlossen bleibt und damit ein "gefährlicher Zustand" entstehen kann.

Gerät mit Sicherheitsmembrane (DWAM, DWAMV, SDBAM)


Bei Druckbegrenzern "besonderer Bauart", die mit **Sicherheitssensoren** ausgerüstet sind, ergeben sich bei den verschiedenen Betriebszuständen die folgenden Schalterstellungen:

Gerät ohne Sicherheitsmembrane

Die "besondere Bauart" ist auch durch eine **Dauerprüfung mit 2 Mio. Schaltspielen** nachweisbar. Bei Bruch/Leckage (z. B. Materialfehler, Fehler in den Schweißnähten, Lochkorrosion) wird jedoch nicht nach der sicheren Seite abgeschaltet (keine Selbstüberwachung).

Bei den verschiedenen Betriebszuständen ergeben sich bei Maximaldrucküberwachung die folgenden Schalterstellungen: Bei Leckage im Drucksensor sind die Druckwächter/Druckbegrenzer nach b) nicht sicher. Es kann ein "gefährlicher Zustand" entstehen.

Weitergehende Betrachtungen und Resümee

Minimaldruck

Alle **Minimaldruckwächter und Minimaldruckbegrenzer sind selbstüberwachend** im Sinne von Druck 100 (auch ohne Sicherheitsmembrane).

Druckbegrenzer müssen den Abschaltzustand verriegeln

Das Merkblatt DRUCK 100 legt fest, dass Druckbegrenzer abschalten und gegen selbsttätiges Einschalten verriegeln müssen. Dazu werden Druckbegrenzer mit integrierter mechanischer Verriegelung (Wiedereinschaltsperre) angeboten. Bei der Auswahl der Verriegelung ist die Wirkungsrichtung wichtig. Je nach Wirkungsrichtung ist festzulegen, ob die Verriegelung bei steigendem (Maximaldrucküberwachung) oder bei fallendem (Minimaldrucküberwachung) Druck erfolgen soll.

Externe Verriegelung ist ebenfalls möglich

Ein Druckwächter kann zum Druckbegrenzer werden, wenn eine elektrische Verriegelung nachgeschaltet ist. Die Abbildungen auf Seite 24 zeigen Vorschläge für Verriegelungsschaltungen für Maximaldruck- und für Minimaldrucküberwachung. Bei der Festlegung der Schaltung ist die Wirkungsrichtung zu beachten. Damit die Kombination Druckwächter mit externer Verriegelung als Begrenzer "besonderer Bauart" gelten kann, muss der Druckwächter selbst die Anforderungen an die "besondere Bauart" erfüllen.

Weitergehende Betrachtungen

"Besondere Bauart" nicht nur bei Dampf- und Heißwasseranlagen?

Nach der derzeitigen Normenlage sind Druckbegrenzer "besonderer Bauart" für Dampfkessel nach TRBS und für Heizungsanlagen nach DIN EN12828, zwingend gefordert. Es liegt nahe, die positiven Erfahrungen aus der Drucküberwachung von Dampfkesseln auch auf andere Anwendungen zu übertragen. Im Sinne von mehr Sicherheit ist es wünschenswert, die Anforderungen an Druckbegrenzer "besonderer Bauart" bei sicherheitsrelevanten Überwachungsaufgaben auch auf andere Regelwerke zu übertragen. Dies gilt besonders für Anwendungen im Gasbereich, zuständig ist dafür die DIN EN 1854, und für flüssige Brennstoffe die DIN EN764-7.

Noch mehr Sicherheit:

Zwangsöffnende Kontakte

Durch zusätzliche Maßnahmen kann die Sicherheit bei der Maximaldrucküberwachung noch gesteigert werden. Die Mikroschalter, normalerweise mit Sprungfederkontakt ausgerüstet, können mit **zwangs-öffnenden Kontakten** bestückt werden (**Schutz vor Kontaktkleben**).

Leitungsbruch- und Kurzschlussüberwachung

Durch einen externen Trennschaltverstärker wird die Zuleitung zum Druckbegrenzer auf Kurzschluss und Unterbrechung überwacht. Bei Fehlern in der Zuleitung wird nach der sicheren Seite abgeschaltet. Ex-d und Ex-i-Ausführungen, teilweise kombiniert mit Sensoren "besonderer Bauart", erschließen das weite Feld der Ex-Anwendungen in **verfahrenstechnischen Anlagen und in der Gastechnik**, siehe Baureihe DBS.

Resümee

Es ist erkennbar, dass durch geschickte Anwendung von technischen Maßnahmen, die Sicherheit wesentlich verbessert und eine Reihe von Ursachen für die Entstehung von gefährlichen Zuständen beseitigt werden kann. Es ist aber auch erkennbar, dass ein Restrisiko bestehen bleibt. Sorgfältige Planung und gewissenhafte Wartung und Prüfung bestehender Anlagen sind unbedingte Voraussetzungen für eine zuverlässige Drucküberwachung an Rohrleitungen und Druckbehältern.

DWAM...

Normen - Richtlinien - Bauteilprüfungen

VdTÜV Druck 100

Dampf und Heißwasser

Druckwächter und Druckbegrenzer für Dampf und Heißwasser in Anlagen nach DIN EN12828 und TRBS. Baureihen DWAM, SDBAM und DWR.

DVGW DIN EN1854

Brenngase C€

Druckwächter und Begrenzer für Brenngase nach DVGW-Arbeitsblatt G 260. Baureihe DGM und DWR.

TÜV DIN EN764-7

Flüssige Brennstoffe

Druckwächter und Druckbegrenzer für flüssige Brennstoffe (Heizöl). Baureihe DWR.

VdTÜV, Druck 100

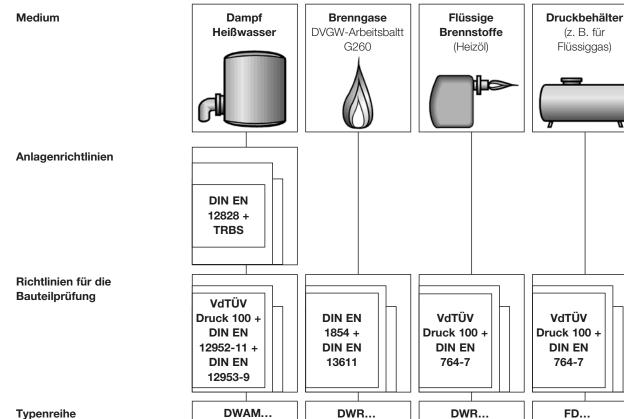
Druckbegrenzer in Sicherheitstechnik

für sicherheitsrelevante Drucküberwachung in Flüssiggasanlagen, chemischen und verfahrenstechnischen Systemen.

DGR 2014/68/EU

Druckgeräterichtlinie 2014/68/EU

Druckwächter und Begrenzer nach DIN EN12952-11 und DIN EN12953-9.


ATEX 2014/34/EU

(Ex)-Ausführung

Für Ex-Bereiche Zone 1 und 2 sowie 20, 21 und 22 können alle Druckschalter in druckfester Kapselung geliefert werden.

Alle Druckschalter in eigensicherer (Ex-i) Ausführung können in den Ex-Zonen 0, 1, 2 sowie 20, 21 und 22 eingesetzt werden. Für eigensichere Steuerstromkreise (Zündschutzart Ex-i) können die Druckschalter mit Goldkontakten, sowie den im Ex-i-Bereich üblichen blauen Klemmen und Kabeleinführungen geliefert werden. Zusätzlich zum Druckschalter ist ein Trennschaltverstärker erforderlich, der die Steuerbefehle des Druckschalters aus einem eigensicheren Steuerstromkreis in einen nicht eigensicheren Wirkstromkreis überträgt.

IECEx

SDBAM...

DWR...

DGM...

Турстисть

Druckwächter

Druckbegrenzer mit interner Verriegelung

Auswahl nach Funktion und Anwendung

Anwendung	Dampf und Heißwasser Anlagen nach TRBS und DIN EN12828	Brenngase nach DVGW- Arbeitsblatt G 260	Heizöl und andere flüssige Brennstoffe	Sonstige Medien (Verträglichkeit mit den verwendeten Werkstoffen ist zu prüfen)
Drucküberwachung Druckregelung (z.B. Brenner- oder Pumpensteuerung) Maximaldruck-	DWAM DWAMV DWR DWR203	DGM DWR DWR203	DWR203	DWAM DWAMV DWR DWR203
begrenzung mit interner Verriegelung mit externer Verriegelung	SDBAM DWR205 DWAM DWR	DGM205 DWR205 DGM DWR	DWR205	SDBAM DWR205 DWAM DWR
Minimaldruck- begrenzung mit interner Verriegelung mit externer Verriegelung	DWR206 DWR DWR	DGM206 DWR206 DGM DWR	DWR206	DWR206

... – hier ist jeweils die Kennziffer für den Druckbereich einzusetzen (siehe Datenblätter); die End-Nr. 2... bedeutet Steckanschluss nach DIN EN175301 (Beispiel DWR...-205).

DWR-Reihe

Die DWR-Reihe deckt alle o. g. Anwendungen ab.

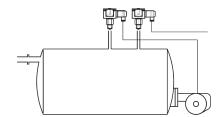
DWAM-, DWAMV-, SDBAM-Reihe (selbstüberwachender Sensor)

DWAM, DWAMV und SDBAM sind **nur für Maximaldrucküberwachung** einsetzbar. Hier bieten sie **zusätzliche Sicherheit** durch die **Sicherheitsmembrane** (selbstüberwachender **Sensor**). Sie haben TÜV-Bauteilprüfungen für Dampf und Heißwasser, können aufgrund des selbstüberwachenden Sensors aber auch für andere, **besonders sicherheitsrelevante Anwendungen** (z.B. in der Verfahrenstechnik) empfehlenswert sein.

Bei Minimaldrucküberwachung sind auch die Sensoren der DWR-Reihe selbstüberwachend.

Ausstattung eines Kessels mit Druckwächter und Druckbegrenzer

Druckwächter für die Brennersteuerung: DWAM... oder DWR...


(ohne einstellbare Schaltdifferenz) oder

(besser, weil Schaltdifferenz einstellbar) **DWAMV... oder DWR...-203**

Druckbegrenzer für die Sicherheitsüberwachung: SDBAM... oder DWR...-205

(mit interner Verriegelung, Entriegelungstaste am Druckbegrenzer) oder

DWAM... oder DWR... (mit externer Verriegelung im Schaltschrank) Schaltungsvorschlag für die externe Verriegelung: siehe Seite 24. Druckwächter DWAM... oder DWR... Druckbegrenzer SDBAM... oder DWR...-205

DWAM, DWAMV, SDBAM

Druckwächter / Druckbegrenzer

Diese Baureihen sind speziell geeignet für die Maximaldrucküberwachung in Dampfund Heißwasseranlagen. Es handelt sich um einen Druckschalter "besonderer Bauart" mit einem selbstüberwachenden Drucksensor, gebaut nach Druckgeräterichtlinie DGR 2014/68/EU

Er ist einsetzbar als Druckwächter oder Druckbegrenzer für Maximaldrucküberwachung (Anlagen nach TRBS, nach DIN EN12828), für Anlagen nach DIN EN12952-11 und DIN EN12953-9 und lieferbar mit oder ohne Differenzverstellung.

SIL2 FUNCTIONAL SAFETY

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss.

Werkstoffe

Druckbalg: Werkstoff-Nr. 1.4571 Fühlergehäuse: Werkstoff-Nr. 1.4104 Schaltgehäuse: GD Al Si 12 nach DIN 1725

Einbaulage

Senkrecht nach oben und waagrecht.

Umgebungstemperatur am Schaltgerät

–20 bis +70 °C

Mediumstemperatur –20 bis +70 °C. Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) oder an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Justierung bei Maximaldruckschalter Die Druckwächter und Sicherheitsdruckbegrenzer sind so justiert, dass bei steigendem Druck beim eingestellten Schaltdruck die Umschaltung erfolgt. Die Rückschaltung bei fallendem Druck liegt um die Schaltdifferenz bzw. bei den Druckbegrenzern um die in der Tabelle abgegebenen Druckabsenkungen niedriger. Der Skalenwert entspricht dem oberen Schaltpunkt.

Schaltdifferenz

Werte siehe Typenübersicht.

Kontaktbestückung

Einpoliger Umschalter

Schalt-	250	٧ ~	250 V-	24 V –
leistung	(ohm)	(ind)	(ohm)	(ohm)
Normal	8 A	5 A	0,3 A	8 A

Berstdruck

Bei allenTypen ≥ 100 bar. Nachgewiesen durch TÜV-Prüfung.

Anwendung

Prüfgrundlage

Funktion

Wirkungsrichtung

Sensor

DampfAnlagen nach TRBSHeißwasserAnlagen nach DIN EN12828VdTÜV-Merkblatt Druck 100

Druckwächter / Druckbegrenzer

Nur für Maximaldrucküberwachung

"besondere Bauart" (selbstüberwachender Sensor durch Sicherheitsmembrane)

Typenübersicht Maximaldrucküberwachung (†) (weitere Druckbereiche siehe DWR-Reihe)

Туре	Einstellbere	ich	Schaltdifferer (Toleranzspar		Max. zulässiger Druck		Maß- zeich- nung	
Druckwächte	er ohne Differ	enzv	erstellung					
für Maximalo	drucküberwad	hung	*				S. 21+22	
DWAM06	0,10,6	bar	20 50	mbar	5	bar		
DWAM1	0,21,6	bar	20 80	mbar	5	bar	1 + 15	
DWAM6	1,26	bar	0,1 0,26	bar	10	bar		
DWAM625	1,26	bar	0,13 0,31	bar	20	bar		
DWAM16	316	bar	0,2 0,6	bar	20	bar	1 + 19	
DWAM32	632	bar	0,6 1,6	bar	45	bar		

Druckwächter mit Differenzverstellung für Maximaldrucküberwachung

DWAMV1	0,21,6 bar	0,120,6 bar	5 bar	1 + 15
DWAMV6	1,26 bar	0,41,5 bar	10 bar	1 + 10
DWAMV16	316 bar	0,82,5 bar	20 bar	1 + 19
DWAMV32	632 bar	2,56,0 bar	45 bar	1 + 19

Druckbegrenzer für Maximaldrucküberwachung (mit interner Verriegelung)

			Druckänderung zum Entriegeln			
SDBAM1	0,21,6	bar	0,12 bar	5	bar	
SDBAM2,5	0,42,5	bar	0,18 bar	5	bar	1 + 15
SDBAM6	1,26	bar	0,42 bar	10	bar	
SDBAM625	1,26	bar	0,6 bar	20	bar	
SDBAM16	316	bar	1,1 bar	20	bar	1 + 19
SDBAM32	632	bar	3,0 bar	45	bar	

- * Die Druckwächter DWAM... können mit nachgeschalteter externer Verriegelung auch als Druckbegrenzer eingesetzt werden. (siehe Seite 24)
- · Plombiereinrichtung P2 bei Begrenzern SDBAM im Lieferumfang enthalten, bei Druckwächtern auf Wunsch auch nachrüstbar. Siehe Plombiereinrichtung P2.
- · DWAM... auch in Ex-i-Ausstattung lieferbar. Siehe Baureihe DBS.

Minimaldrucküberwachung

- Minimaldruckwächter: DWR... (Seite 55)
- Minimaldruckbegrenzer: DWR...-206 (Seite 56)

DWAM6-576

DBS

Druckwächter / Druckbegrenzer

Die Druckbegrenzer in Sicherheitstechnik bieten gegenüber den normalen Druckschaltern in vielen Punkten ein höheres Maß an Sicherheit und sind deshalb besonders für Anlagen der chemischen Verfahrenstechnik und der Wärmetechnik geeignet, bei denen besonders auf Sicherheit bei der Drucküberwachung Wert gelegt werden muss. Die Druckschalter sind auch in Ex-Bereichen (Zone 0, 1, 2 und 20, 21, 22) einsetzbar und benötigen in jedem Fall einen Trennschaltverstärker.

SIL2 FUNCTIONAL SAFETY

Der Trennschaltverstärker ist auch für die Überwachung der Leitungen auf Kurzschluss und Leitungsbruch zuständig und bietet deshalb – auch in Nicht-Ex-Bereichen – einen zusätzlichen Sicherheitsvorteil. Bei Ex-Anwendungen muss der Trennschaltverstärker außerhalb der Ex-Zone installiert werden. Die Leitungen zwischen Trennschaltverstärker und dem Druckschalter werden auf Kurzschluss und Leitungsbruch überwacht.

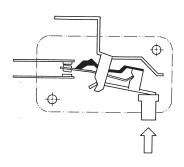
SIL 2 gemäß IEC 61508-2

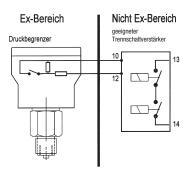
Technische Daten

Mehr Sicherheit

- bei verfahrenstechnischen und chemischen Anlagen
- · bei Gas-und Flüssiggasanlagen

Grundausstattung:


- "Besondere Bauart" nach VdTÜV-Merkblatt "Druck 100"
- Leitungsbruch- und Kurzschlussüberwachung zwischen Druckschalter und Trennschaltverstärker
- Für Ex-Bereiche (Zone 0, 1 u. 2 bzw. 20, 21 und 22) geeignet (Zündschutzart Ex-i)
- Schutzart IP 65
- Kunststoffbeschichtete Gehäuse (Chemieausführung)


Optionen:

Begrenzerausführung mit interner Verriegelung

Gerätespezifische Merkmale:

- Selbstüberwachende Sensoren
- Zwangsöffnende Mikroschalter
- Vergoldete Kontakte
- TÜV-, DVGW-Bauteilprüfungen

Sicherheitstechnische Anforderungen an Druckbegrenzer

Druckbegrenzer "besonderer Bauart" (DBS) müssen zusätzliche Anforderungen an die erweiterte Sicherheit erfüllen, d. h. ein Bruch oder eine Undichtigkeit im mechanischen Teil des Messwerks muss zu einer Abschaltung nach der sicheren Seite führen. Der Druckbegrenzer muss so reagieren, als ob der Anlagendruck den maximalen Grenzwert bereits überschritten hätte. In die sicherheitstechnische Betrachtung des Druckbegrenzers muss auch der Steuerstromkreis, der über den Druckbegrenzer führt, einbezogen werden, denn Kurzschlüsse in den Zuleitungen oder andere Fehler im Steuerstromkreis können zu gefährlichen Zuständen führen.

Schaltelement mit Zwangsöffnung und vergoldeten Kontakten

Der Mikroschalter ist mit einer Zwangsöffnung ausgestattet. Im Gegensatz zu der bei den meisten Mikroschaltern üblichen Übertragung der Stößelkraft über eine Sprungfeder, ist der neu entwickelte Mikroschalter mit einem zusätzlichen Hebel versehen, der die Hubbewegungen des Druckbalgs formschlüssig auf den Kontakthebel überträgt. Bei Bruch der Sprungfeder wird der Kontaktbügel direkt bewegt.

Leitungsbruch- und Kurzschlussüberwachung im Steuerstromkreis

Der Widerstand in Reihe zum Schaltkontakt begrenzt den Strom bei geschlossenem Schalter auf einen definierten Wert. Bei Kurzschluss im Steuerstromkreis im Bereich zwischen Trennschaltverstärker und Reihenwiderstand steigt der Strom über den vorgegebenen Grenzwert an, das Relais des Trennschaltverstärkers fällt ab, der Ausgangsstromkreis wird unterbrochen und damit der sichere Zustand erreicht. Bei Leitungsbruch wird der Stromfluss unterbrochen, das Relais fällt nach der sicheren Seite ab und unterbricht den Ausgangsstromkreis (Sicherheitskette). Der Trennschaltverstärker ist darüber hinaus so gebaut, dass bei Fehlern in der Elektronik (Leiterbahnunterbrechung, Bauteildefekt usw.) und bei den daraus resultierenden Folgefehlern der sichere Abschaltzustand eingenommen wird. Diese Eigenschaften des Trennschaltverstärkers für Sicherheitstechnik, einschließlich Leitungsbruch- und Kurzschlussüberwachung, entsprechend den Vorschriften der DIN/VDE 0660, Teil 209.

Anschlussplan

Bei Drucküberwachung in Ex-Bereichen ist der Trennschaltverstärker außerhalb der Ex-Zone anzuordnen. Über den Druckbegrenzer wird ein eigensicherer Steuerstromkreis (Ex-i) geführt. Diese Anordnung ist geeignet für Zone 0, 1 und 2 bzw. 20, 21 und 22.

Maximaldruckwächter in Sicherheitstechnik

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss), G 1/4 innen nach DIN 16 288.

Schaltgehäuse 500

Aluminium-Druckguss GD AI Si 12. Alu-Gehäuse mit beständigem Kunststoff beschichtet.

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Schutzart IP 65.

Ex-Schutzart

Ex-i (nur zusammen mit geeignetem Trennschaltgerät).

Bauteilprüfung Siehe Tabelle Seite 52.

Druckfühler-Werkstoffe

Gehäuse: 1.4104 Druckbalg: 1.4571

Alle Teile komplett verschweißt.

Umgebungstemperatur

DWAM: -20 bis + 60 °C DWR: -25 bis + 60 °C

Bei Umgebungstemperaturen um oder unter 0 °C ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen

Max. Mediumstemperatur am Sensor + 60 °C.

Freiluftanlagen

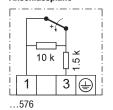
Gerät vor direkten Witterungseinflüssen schützen. Schutzhaube vorsehen!

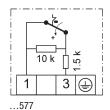
Max. zulässiger Betriebsdruck

Siehe Typenübersicht.

Schaltdruckeinstellung

Nach Abnahme des Klemmenanschlusskastens an Stellspindel einstellbar.


Montage


Mit geeignetem Anschweißstutzen und Überwurfmutter oder mit Manometerverschraubung G 1/2.

Für den Versorgungsstromkreis gilt:

U_i 14 V DC R_i 1500 Ohm C_i 1 nF L_i 100 μH

Anschlusspläne

EMF

Maximaldruckwächter

Sensor "besonderer Bauart", selbstüberwachend durch Sicherheitsmembrane, bauteilgeprüft nach VdTÜV Merkblatt Druck 100. SIL2 nach IEC 61508-2

Туре	Einstellbere	eich	Schaltdifferer (Toleranzspa	-	Max. zuläs Druc	ssiger	Maß- zeich- nung
							Seite 21 + 22
DWAM06-576	0,10,6	bar	20 50	mbar	5	bar	
DWAM1-576	0,21,6	bar	20 80	mbar	5	bar	
DWAM2,5-576	0,42,5	bar	40 100	mbar	5	bar	3 +
DWAM6-576	1,26	bar	0,1 0,26	bar	10	bar	15
DWAM625-576	1,26	bar	0,13 0,31	bar	20	bar	
DWAM16-576	316	bar	0,2 0,6	bar	20	bar	3 +
DWAM32	632	bar	0,6 1,6	bar	45	bar	19

Varianten:

ZF577: Maximaldruckbegrenzer (mit interner Verriegelung) Mikroschalter nicht zwangsöffnend, Kontakte: Silberlegierung übrige Ausstattung wie DWAM...576

Maximaldruckwächter

Sensor "besonderer Bauart "durch Bauteilprüfung mit **2 Millionen Schaltspielen,** nicht selbstüberwachend. **SIL2 nach IEC 61508-2**

Bauteilprüfungen:

VdTÜV Merkblatt Druck 100 DIN EN1854 (für Brenngase)

DIN EN764-7, für Anlagen nach DIN EN12952-11 und DIN EN12953-9

Туре	Einstellber	eich	Schaltdiffere (Toleranzspa		Max Druc		Maß- zeich- nung	
							Seite 21+22	
DWR06-576	0,10,6	bar	35 73	mbar	6	bar	3+	
DWR1-576	0,21,6	bar	53 111	mbar	6	bar	15	
DWR3-576	0,22,5	bar	107 218	mbar	16	bar	3+	
DWR6-576	0,56	bar	0,08 0,30	bar	16	bar	18	
DWR625-576	0,56	bar	0,22 0,45	bar	25	bar	3+	
DWR16-576	316	bar	0,40 0,81	bar	25	bar	17	
DWR25-576	425	bar	0,80 1,67	bar	63	bar	3 +	
DWR40-576	840	bar	1,32 2,75	bar	63	bar	16	

Varianten:

ZF577: Maximaldruckbegrenzer (mit interner Verriegelung)

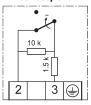
Mikroschalter nicht zwangsöffnend, Kontakte: Silberlegierung übrige Ausstattung wie DWR...576

Justierung

Geräte der Baureihen **DWR-576** und **DWAM-576** sind bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger. (Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.)

Minimaldruckwächter in Sicherheitstechnik

Sensor in "besondere Bauart" aus Edelstahl. (selbstüberwachend und Bauteilprüfung mit 2 Mio. Schaltspielen). Bauteilprüfungen: VdTÜV-Merkblatt "Druck 100", DIN EN1854 (Brenngase), DIN EN764-7, für Anlagen DIN EN12952-11 und DIN EN12953-9


SIL2 gemäß IEC 61508-2

Technische Daten

Schaltelement

Siehe nebenstehende Tabelle.

Anschlusspläne

...574 ...575

Die übrigen technischen Daten entsprechen den Geräten für Maximaldrucküberwachung (Seite 51).

Für den Versorgungsstromkreis gilt:

U_i 14 V DC R_i 1500 Ohm C_i 1 nF L_i 100 µH

Туре	Einstellbereich	Schaltdifferenz (Toleranzspani		. zul. ck	Maß- zeich- nung
					Seite 21+22
DWR06-574	0,10,6 bar	35 73 m	bar 6	bar	3 +
DWR1-574	0,21,6 bar	40 100 m	bar 6	bar	15
DWR3-574	0,22,5 bar	107 218 m	bar 16	bar	3 +
DWR6-574	0,56 bar	0,08 0,30 ba	ar 16	bar	18
DWR625-574	0,56 bar	0,22 0,45 ba	ar 25	bar	3 +
DWR16-574	316 bar	0,2 0,6 ba	ar 25	bar	17
DWR25-574	425 bar	0,8 1,67 ba	ar 63	bar	3 + 16

Justierung

Die Baureihe **DWR-574** ist bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Varianten:

ZF575: Minimaldruckbegrenzer (mit interner Verriegelung)

Mikroschalter nicht zwangsöffnend, Schaltkontakte: Silberlegierung übrige Ausstattung wie DWR...574

Druckwächter und Druckbegrenzer in Sicherheitstechnik

Geräte	Bauteil- prüfungen	Ausstattung						
	1 = VdTÜV Merkblatt Druck 100 2 = DIN EN1854 (Brenngase) 3 = DIN EN764-7 4 = DIN EN12952-11/DIN EN12953-9 5 = ATEX/IEC-EX	Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung	Ex-i-Ausstattung für eigensichere Steuerstromkreise	Selbstüberwachender Drucksensor	Gehäuse kunststoffbeschichtet Chemieausführung	Zwangsöffnender Mikroschalter	Vergoldete Kontakte	Begrenzerfunktion mit interner Verriegelung, Wiedereinschaltsperre
Maximaldrucküberwachung								
FD16-326	1 + 3 + 5							
FD16-327	1 + 3 + 5							
DWAM576	1 + 4 + 5							
DWAM577	1 + 4 + 5							
DWR576	1 + 2 + 3 + 4 + 5							
DWR577	1 + 2 + 3 + 4 + 5							
Minimaldrucküberwachung								
DWR574	1 + 2 + 3 + 4 + 5							
DWR575	1 + 2 + 3 + 4 + 5							

FD

Maximaldruckbegrenzer für Flüssiggasanlagen

Die Druckbegrenzer der Reihe FD sind nach den speziellen Richtlinien der Flüssiggastechnik gebaut. Alle mit dem Medium in Verbindung stehenden Teile bestehen aus Edelstahl 1.4104 und 1.4571. Der Drucksensor ist "selbstüberwachend" ausgeführt, d. h. bei Bruch des Messbalgs schaltet der Druckbegrenzer nach der sicheren Seite ab.

Der Druckfühler entspricht damit der "besonderen Bauart" im Sinne des VdTÜV-Merkblatts "Druck 100". Die Druckbegrenzer werden in eigensicheren Steuerstromkreisen (Ex-Schutzart Ex-i) betrieben. Durch Verwendung eines Trennschaltverstärkers wird der Steuerstromkreis zusätzlich auf Unterbrechung und Kurzschluss überwacht.

SIL2 FUNCTIONAL SAFETY

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss Außengewinde G 1/2 (Manometeranschluss), G 1/4 innen nach DIN 16 288

Schaltgehäuse 300

Aluminium-Druckguss GD Al Si 12.

Einbaulage

Senkrecht mit Schaltgerät nach oben

Schutzart: IP 65

Ex-Schutzart Ex-i (nur zusammen mit Trennschaltgerät).

Druckfühler-Werkstoffe

Gehäuse: 1.4104, Druckbalg: 1.4571 Alle Teile komplett verschweißt. Sicherheitsmembrane (nicht mediumsberührt) aus Perbunan.

Umgebungstemperatur –25 °C bis +60 °C. Bei Umgebungstemperaturen unter 0°C ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann.

Max. Mediumstemperatur: $+60~^{\circ}\text{C}$.

Freiluftanlagen

Gerät vor direkten Witterungseinflüssen schützen. Geeignete Schutzhaube vorsehen!

Max. zul. Betriebsdruck: 40 bar.

Schaltdruck: 3-16 bar.

Nach Abnahme des Klemmanschlusskastens an Stellspindel einstellbar.

Justierung

Die Baureilen FD16-316 und FD16-327 sind bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger. (Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.)

Verriegelung nach Abschaltung

Interne Verriegelung bei FD 16–327. Lösen der Verriegelung: Nach Absenkung des Drucks um ca. 2,5 bar durch Eindrücken der roten Taste (mit Werkzeug) an der Skalenseite des Druckschalters.

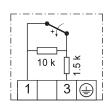
Externe Verriegelung bei FD 16–326. Lösen der Verriegelung: Nach Absenkung des Drucks um ca. 0,5 bar. Entriegelungstaste im Schaltschrank betätigen.

Leitungsbruch und Kurzschlussüberwachung Bei den Typen FD 16–326 und FD 16–327 wird zusammen mit dem Trennschaltverstärker der Steuerstromkreis auf Kurzschluss und Leitungsbruch überwacht. Die im Druckschalter eingebaute Widerstandskombination sorgt dafür, dass im Normalbetrieb immer ein definierter Strom fließt. Bei Kurzschluss oder Unterbrechung ändert sich der Strom, das Relais schaltet nach der sicheren Seite ab.

Typenübersicht

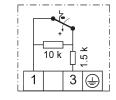
Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Verriegelung*	Maßzeich- nung
				Seite 21 + 22
FD16-326	3-16 bar	0,3 1,0 bar	Extern	3 + 19
FD16-327	3-16 bar	1,5 3,0 bar	Intern	3 + 19

^{*} Verriegelung bei Erreichen des eingestellten Schaltpunktes (max.)


Entriegelung:

E = Extern, d. h. im Schaltschrank durch Relais mit Selbsthaltung I = Intern, d. h. vor Ort am Druckbegrenzer

Für den Versorgungsstromkreis gilt:


 $\begin{array}{lll} U_i & 14 \text{ V DC} \\ R_i & 1500 \text{ Ohm} \\ C_i & 1 \text{ nF} \\ L_i & 100 \text{ } \mu\text{H} \end{array}$

Innenschaltung

FD16-326

Einpoliger Umschalter mit Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung. (Externe Verriegelung im Schaltschrank notwendig.)

FD16-327

Einpoliger Umschalter mit mechanischer Verriegelung des Schaltzustands bei Erreichen des Maximaldrucks und mit Widerstandskombination für Leitungsbruchund Kurzschlussüberwachung.

Achtung: Druckbegrenzer FD dürfen niemals direkt an Netzspannung angelegt werden, sie dürfen nur mit geeignetem Trennschaltverstärker betrieben werden.

DGM

Druckwächter für Brenngase

DVGW-geprüft n. DIN EN 1854. Die Gasdruckwächter sind für alle Gase nach DVGW-Arbeitsblatt G 260 und für Luft geeignet.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1 (zulässig bis 4 bar).

Schaltgerät

Seewasserbeständiger Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 54, bei senkrechter Einbaulage

Werkstoffe der Druckfühler

siehe Typenübersicht.

Umgebungstemperatur –25 bis +60 °C. Bei Umgebungstemperaturen unter 0 °C ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann.

Max. zulässiger Betriebsdruck

siehe Typenübersicht.

Montage

Entweder direkt auf die Rohrleitung oder mit 2 Schrauben, 4 mm ø, an Wandfläche.

Einbaulage

Senkrecht nach oben und waagrecht.

Einstellung

Mittels Schraubendreher an Stellspindel stufenlos einstellbar. Der eingestellte Schaltdruck ist im Skalenfenster sichtbar.

Plombiermöglichkeit P2

Auf Wunsch (auch nachträglich zu montieren).

Schaltdifferenzen

Weitgehend unabhängig vom eingestellten Schaltdruck. Nicht verstellbar. Werte siehe Typenübersicht.

Schaltleictung	250	٧ ~	250 V-	24 V –	
Schaltleistung	(ohm)	(ind)	(ohm)	(ohm)	
Normal	8 A	5 A	0.3 A	8 A	

Druckmessstutzen

Es muss dafür gesorgt sein, dass an geeigneter Stelle der Gasverbrauchseinrichtung ein Druckmessstutzen zur Verfügung steht.

Anwendung
Prüfgrundlage
Funktion

Brenngase nach DVGW-Arbeitsblatt G 260
DIN EN1854
Druckwächter

Wirkungsrichtung

Für Maximaldruck- und Minimaldrucküberwachung

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. Betriebs- druck	Medium- berührte Werkstoffe	Maß- zeich- nung
					S. 21+22
DGM306A	1560 mba	ar 2 10 mbar	0,8 bar	CU + Ms	
DGM310A	20100 mba	ar 4 10 mbar	0,8 bar	CU + Ms	1 + 13
DGM325A	40250 mba	ar 7 14 mbar	0,8 bar	CU + Ms	
DGM06A	100600 mba	ar 10 35 mbar	2 bar	CU + Ms	1 + 14
DGM1A	0,21,6 bar	10 55 mbar	3 bar	CU + Ms	
DGM506	1560 mba	ar 7 11 mbar	5 bar	1.4104	
DGM516	40160 mba	ar 10 18 mbar	5 bar	1.4104	1 + 12
DGM525	100250 mba	ar 12 20 mbar	5 bar	1.4104	

Justierung

Die Baureihe **DGM** ist bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger. (Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.)

Weitere Druckbereiche siehe Typenreihe DWR, S. 55

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

⟨Ex⟩-DGM siehe Seite 67

DWR

Druckwächter

Besonders geeignet als Druckwächter oder Druckbegrenzer für Brenngase (DVGW-Arbeitsblatt G 260) und flüssige Brennstoffe (z.B. Heizöl) sowie für Dampfanlagen nach TRBS und Heißwasser Anlagen nach DIN EN12828, für Anlagen nach

SIL2 FUNCTIONAL SAFETY

DIN EN12952-11 und DIN EN12953-9. Der DWR dient der Maximaldruck- und Minimaldrucküberwachung. Dieser Druckschalter nach "besonderer Bauart" verfügt über eine Prüfung mit 2 Mio. Schaltspielen. TÜV und DVGW – Prüfung ist vorhanden.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1 (für Gasanwendungen Innengewinde nur bis 4 bar zulässio).

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss.

Werkstoffe

Druckbalg: Werkstoff-Nr. 1.4571 Fühlergehäuse: Werkstoff-Nr. 1.4104 Schaltgehäuse: GD Al Si 12 (DIN 1725)

Einbaulage

Senkrecht nach oben und waagrecht.

Umgebungstemperatur am Schaltgerät −25...+70 °C,

Mediumstemperatur –25...+70 °C.
Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen
Umgebungstemperatur am Schaltgerät sein.
Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) o. an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Justierung

Die Baureihe DWR ist bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger. (Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.)

In der Ausführung ...-203 ist die Schaltdifferenz einstellbar, die Grundjustage bleibt erhalten.

Berstdruck

Bei allenTypen \geq 100 bar, nachgewiesen durch TÜV-Prüfung.

Schaltdifferenz

Werte siehe Typenübersicht.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung				24 V –	
Containioistang	(ohm)	(ind)	(ohm)	(ohm)	
Normal	8 A	5 A	0,3 A	8 A	

Schutzart

IP 54 nach DIN 40 050

A	wer	

Funktion

Wirkungsrichtung

Sensor

DampfAnlagen nach TRBS

HeißwasserAnlagen nach DIN EN12828BrenngaseDVGW-Arbeitsblatt G 260

Druckbehälter DIN EN764-7 Druckwächter oder Druckbegrenzer (mit externer Verriegelung)

Für Maximaldruck- und Minimaldrucküberwachung (DWFS, SDBFS)

"Besondere Bauart" durch Prüfung mit 2 Mio. Schaltspielen.

Typenübersicht

Туре	Einstellbe	reich	Schaltdiffere (Toleranzspa		Maxi Betri drucl		Maß- zeich- nung
Druckwächte	S. 21+22						
DWR06	0,10,6	bar	10 50	mbar	6	bar	1 + 15
DWR1	0,21,6	bar	40 100	mbar			
DWR3	0,22,5	bar	40 160	mbar	16	bar	1 + 18
DWR6	0,56	bar	0,08 0,3	bar			
DWR625	0,56	bar	0,08 0,3	bar	25	bar	1 + 17
DWR16	316	bar	0,2 0,6	bar			
DWR25	425	bar	0,3 1,5	bar	63	bar	1 + 16
DWR40	840	bar	0,8 1,6	bar			
Schaltdiffere	nz einstellk	oar					
DWR06-203	0,10,6	bar	0,08 0,5	bar	6	bar	1 + 15
DWR1-203	0,21,6	bar	0,15 0,6	bar			
DWR3-203	0,22,5	bar	0,17 1,4	bar	16	bar	1 + 18
DWR6-203	0,56	bar	0,3 1,7	bar			
DWR625-203	0,56	bar	0,4 2,5	bar	25	bar	1 + 17
DWR16-203	316	bar	0,75 3,15	bar			
DWR25-203	425	bar	1,3 6,0	bar	63	bar	1 + 16
DWR40-203	840	bar	2,3 6,6	bar			

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

Schutzart: IP 54

DWR625-205

DWR

Druckbegrenzer

Besonders geeignet als Druckbegrenzer für Brenngase (DVGW-Arbeitsblatt G 260) und flüssige Brennstoffe (z.B. Heizöl) sowie für Dampfanlagen nach TRBS und Heißwasser Anlagen nach DIN EN12828, für Anlagen nach DIN EN12952-11 und DIN EN12953-9.

Der DWR-B dient der Maximaldruck- und Minimaldruckbegrenzung und besitzt eine interne Verriegelung.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1 (für Gasanwendungen Innengewinde nur bis 4 bar zulässig).

Schaltgerät

Stabiles Gehäuse (200) aus seewasserbeständigem Aluminium-Druckguss.

Werkstoffe

Druckbalg: Werkstoff-Nr. 1.4571 Fühlergehäuse: Werkstoff-Nr. 1.4104 Schaltgehäuse: GD Al Si 12 (DIN 1725)

Einbaulage Senkrecht nach oben und waagrecht.

Umgebungstemperatur am Schaltgerät –25...+70 °C.

Mediumstemperatur –25...+70 °C. Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Kurzzeitig einwirkende Temperaturen bis 85 °C sind zulässig.

Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) o. an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Justierung

Die Baureihe **DWR-205** ist bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger. (Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.)

Die Baureine **DWR-206** ist bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltdpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Berstdruck Bei allenTypen ≥ 100 bar, nachgewiesen durch TÜV-Prüfung.

Schaltdifferenz Werte siehe Typenübersicht.

Kontaktbestückung Einpoliger Umschalter.

Schaltleistung	250 V ~ (ohm) (ind)			24 V – (ohm)
Normal	8 A		0,3 A	8 A

Schutzart IP 54 nach DIN 40 050

Plombiermöglichkeit P2

Auf Wunsch (auch nachträglich zu montieren).

Anwendung
Dampf Anlagen nach TRBS
Heißwasser Anlagen nach DIN EN12828
Brenngase DVGW-Arbeitsblatt G 260
Druckbehälter DIN EN764-7

Funktion Druckbegrenzer (mit interner Verriegelung)

Wirkungsrichtung Für Maximaldruck- und Minimaldrucküberwachung (SDBFS)

"Besondere Bauart" durch Prüfung mit 2 Mio. Schaltspielen.

Wichtig: Bei der Auswahl des Begrenzers ist streng zu unterscheiden, ob das Gerät für Maximal- oder Minimaldrucküberwachung eingesetzt wird. Eine Umkehrung der Wirkungsrichtung am Druckbegrenzer ist nicht möglich.

Typenübersicht

Sensor

Туре	Einstellbe	ereich	Schaltdifferenz (Toleranzspanne)	Maximaler Betriebsdruck	Maß- zeich- nung
Maximaldruck	begrenze	er			S. 21+22
DWR06-205	0,10,6	bar	35 73 mbar	6 bar	1 + 15
DWR1-205	0,21,6	bar	53 111 mbar		
DWR3-205	0,22,5	bar	107 218 mbar	16 bar	1 + 18
DWR6-205	0,56	bar	0,17 0,35 bar		
DWR625-205	0,56	bar	0,22 0,45 bar	25 bar	1 + 17
DWR16-205	316	bar	0,40 0,81 bar		
DWR25-205	425	bar	0,80 1,67 bar	63 bar	1 + 16
DWR40-205	840	bar	1,32 2,75 bar		
Minimaldruck	begrenze	r			
DWR06-206	0,10,6	bar	35 73 mbar	6 bar	1 + 15
DWR1-206	0,21,6	bar	53 111 mbar		
DWR3-206	0,22,5	bar	107 218 mbar	16 bar	1 + 18
DWR6-206	0,56	bar	0,17 0,35 bar		
DWR625-206	- ,	bar	0,22 0,45 bar	25 bar	1 + 17
DWR16-206	316	bar	0,40 0,81 bar		
DWR25-206	425	bar	0,80 1,67 bar	63 bar	1 + 16
DWR40-206	840	bar	1,32 2,75 bar		

Druckwächter DWR... (Seite 55) können auch als Maximaldruck- und Minimaldruckbegrenzer mit externer Verriegelung eingesetzt werden. Weitere Maximaldruckbegrenzer mit Sicherheitssensor, Typenreihe SDBAM..., finden Sie auf Seite 49. Auch die Typen DWAM... können mit externer Verriegelung als Maximaldruckbegrenzer eingesetzt werden.

Allgemeine Hinweise zum Explosionsschutz

Grundprinzip

Das Grundprinzip des Explosionsschutzes besteht darin, das gleichzeitige Auftreten von:

- a) brennbaren Stoffen (Gas, Dampf, Nebel oder Staub) in gefahrdrohender Menge
- b) Luft (oder Sauerstoff)
- c) Zündquellen

zu verhindern.

In der Richtlinie 2014/34/EU werden Forderungen für die Herstellung von explosionsgeschützten Geräten, sowie für die kontinuierliche Überwachung der Qualitätssicherung und der Fertigung durch eine "benannte Stelle" erhoben. Neben der ISO 9000 ff gilt für die Fertigungsüberwachung die Norm ISO/IEC 80079-34 für Qualitätssicherungssysteme in Fertigungsbereichen für Ex-geschützte Produkte.

Für die Zulassung explosionsgeschützter Geräte von FEMA gelten die unter dieser Richtlinie harmonisiereten Normen der Reihe EN60079 für die verschiedenen Zündschutzarten.

Die für FEMA wichtigen Zündschutzarten sind:

Druckfeste Kapselung: "Ex-d" EN60079-1 Erhöhte Sicherheit: "Ex-e" EN60079-7 Schutz durch Gehäuse: "Ex-t" EN60079-31 Eigensicherheit: "Ex-i" EN60079-11

Für den Einsatz in explosionsgefährdeten Bereichen sind speziell ausgeführte FEMA Ex-Druckschalter und Ex-Thermostate erhältlich. Sie entsprechen diesen Normen und sind baumustergeprüft, (Ex-d, Ex-e, Ex-t, sowie Ex-i).

Druckfeste Kapselung "d":

Schaltelemente und andere elektrische Funktionseinheiten, welche ein explosionsfähiges Gemisch zünden können, sind in ein Gehäuse eingeschlossen, das bei einer Explosion im Inneren dem Explosionsdruck widersteht und durch seine besondere Konstruktion eine Übertragung dieser Explosion auf die umgebende Atmosphäre verhindert.

Erhöhte Sicherheit "e":

Diese Zündschutzart bezieht sich auf die besondere Konstruktion im Klemmenanschlussgehäuse. Der Anschlussbereich ist durch Verguss räumlich vom Mikroschalter getrennt gestaltet. Zusammen mit einer baumustergeprüften Reihenklemme, einer baumustergeprüften Kabeleinführung und der Schutzart IP65, wird die Zündschutzart "Ex-e" im Anschlussgehäuse sichergestellt.

Schutz durch Gehäuse "t":

Diese Zündschutzart gilt für den Staub-Explosionsschutz und stützt sich auf die sichere Fernhaltung von Staub-Atmosphäre von Zündquellen. Für FEMA Druckschalter und Thermostate für den Einsatz im staubexplosionsgefährdeten Bereich gilt die Schutzart IP65. Zusammen mit den weiteren Zündschutzarten "Ex-d" und "Ex-e" sind die Geräte für den Einsatz in Gas- und Staubatmosphäre zugelassen.

Eigensicherheit "i":

Die im explosionsgefährdeten Bereich eingesetzten Betriebsmittel sind Bestandteile eigensicherer Stromkreise. Ein Stromkreis ist eigensicher, wenn die darin enthaltenen Energiemenge zu gering ist, um Funken oder andere thermische Effekte zu generieren, welche eine umgebende zündfähige Atmosphäre zum Zünden bringen kann.

FEMA Druckschalter in Zündschutzart Ex-i dürfen nur in Zusammenschaltung mit einen baumustergeprüften Trennschalterverstärker eingesetzt werden. Führend für die Zündschutzart ist dabei die Zulassung des Trennschaltverstärkers. Generell fallen Druckschalter oder Thermostate unter die Rubrik "Einfaches elektrisches Betriebsmittel" und sind somit nicht zwingend zur Zertifizierung verpflichtet. Geräte in Ex-i Ausführung weisen die typischen Merkmale für den Einsatz von Geräten in dieser Zündschutzart auf. Dazu gehören Mikroschalter mit Goldkontakt, eine Erdungsschraube intern, eine blaue Reihenklemme, sowie eine zugelassene Leitungseinführung in blauer Farbe. Für schlüssigere Argumentation gegenüber Kunden und Zulassungsbehörden wurden unsere Ex-i Druckschalter und Thermostate auf freiwilliger Basis geprüft und in die neue Baumusterprüfung mit aufgenommen.

Allgemeine Hinweise zum Explosionsschutz

Zoneneinteilung

Für die Planung einer neuen Anlage oder den projektierten Umbau einer bestehenden Anlage muss gemäß Richtlinie 1999/92/EG für den Betrieb eine Zoneneinteilung durchgeführt werden. Zielführend hierfür ist die Norm EN 1127-1. Ebenfalls hilfreich bei der Beurteilung einer Explosionsgefahr und der nachfolgenden Festlegung explosionsgefährdeter Bereiche sind die "Richtlinien für Vermeidung der Gefahren durch explosionsfähige Atmosphären mit Beispielsammlung (exRL)" der Berufsgenossenschaft Chemie. Für Situationen mit unklarer Beurteilungslage müssen für die Entscheidung die Aufsichtsbehörden (Gewerbeaufsichtsamt, ggf. unter Mitwirkung der Berufsgenossenschaft oder den Technischen Überwachungsvereinen) mit einbezogen werden. Die Pflicht zur Zoneneinteilung obliegt dem Planer, Errichter oder Betreiber einer Anlage. Das Resultat der Zoneneinteilung wird im Explosionsschutzdokument dokumentiert und gemäß aktueller Rechtslage, aber mindestens für die Dauer des Bestehens und des Betriebes der Anlage archiviert. In Folge dieser Zoneneinteilung müssen die dafür geeigneten explosionsgeschützten Geräte eingesetzt werden.

In den Zonen 0 (20) und 1 (21) dürfen nur elektrische Betriebsmittel verwendet werden, für die eine Baumusterprüfbescheinigung einer anerkannten Prüfstelle vorliegt, in Zone 0 (20) jedoch nur solche, die hierfür ausdrücklich zugelassen sind. In Zone 2 (22) dürfen die für den Einsatz in den Zonen 0 (20) und 1 (21) zugelassenen Betriebsmittel ebenfalls verwendet werden.

Grundsätzlich wird unterschieden zwischen Gasatmosphären und Staubatmosphären

		I				
	Zone 0	ständig oder langzeitig	Zone 0 (Gas) umfasst Bereiche, in denen gefährliche explosionsfähige Atmosphäre ständig oder langzeitig vorhanden ist. Hierzu gehört in der Regel nur das Innere von Behältern oder das Innere von Apparaturen (Verdampfern, Reaktionsgefäßen usw.), wenn die Bedingungen der Zone 0 erfüllt sind. Ständige Gefahr > 1000 Stunden/Jahr.			
Gas	Zone 1	gelegentlich	Zone 1 (Gas) umfasst Bereiche, in denen damit zu rechnen ist, dass gefährliche explosionsfähige Atmosphäre bei normalem Betrieb gelegentlich auftritt. Hierzu kann u. a. die nähere Umgebung der Zone 0 gehören. Gelegentliche Gefahr 10 bis 1000 Stunden/Jahr.			
	Zone 2	selten und kurzzeitig	Zone 2 (Gas) umfasst Bereiche, in denen damit zu rechnen ist, dass gefährliche explosionsfähige Atmosphäre nur selten und dann auch nur kurzzeitig auftritt. Hierzu können Bereiche gehören, die die Zonen 0 und/oder 1 umgeben. Gefahr nur bei abnormalen Betriebsbedingungen < 10 Stunden/Jahr.			
	Zone 20	ständig oder langzeitig	Zone 20 (Staub) umfasst den Bereich, in dem eine gefährliche explosionsfähige Atmosphäre in Form einer Staubwolke in Luft ständig oder langzeitig oder häufig vorhanden ist, und in dem Staubablagerungen unbekannter oder übermäßiger Dicke gebildet werden können. Staubablagerungen alleine bilden keine Zone 20. Ständige Gefahr > 1000 Stunden/Jahr.			
Staub	Zone 21	gelegentlich	Zone 21 (Staub) umfasst den Bereich, in dem bei normalem Betrieb gefährliche Atmosphäre in Form einer Staubwolke in Luft gelegentlich auftreten kann, und in dem Ablagerungen oder Schichten von brennbarem Staub im Allgemeinen vorhanden sein werden. Hierzu kann auch die nähere Umgebung von Zone 20 gehören. Gelegentliche Gefahr 10 bis 1000 Stunden/Jahr.			
	Zone 22	selten und kurzzeitig	Zone 22 (Staub) umfasst Bereiche, in denen damit zu rechnen ist, dass gefährliche explosionsfähige Atmosphäre nur selten und dann auch nur kurzzeitig auftritt. Hierzu können Bereiche gehören, die zur Umgebung der Zonen 20 und 21 zählen. Gefahr nur bei abnormalen Betriebsbedingungen < 10 Stunden/Jahr.			

Allgemeine Hinweise zum Explosionsschutz

Explosionsgruppe

Die Anforderungen an die explosionsgeschützten Betriebsmittel sind abhängig von den am Betriebsmittel vorhandenen Gasen und/oder Dämpfen sowie am Betriebsmittel aufliegenden, anhaftenden und/oder das Betriebsmittel umgebenden Stäuben. Dies beeinflusst die bei der druckfesten Kapselung erforderlichen Spaltabmessungen und bei eigensicheren Stromkreisen die maximal zulässigen Strom- und Spannungswerte. Gase, Dämpfe und Stäube werden deshalb nach verschiedenen Explosionsgruppen unterteilt. Die Gefährlichkeit der Gase nimmt von Explosionsgruppe IIA nach IIC zu, entsprechend steigen die Anforderungen an elektrische Betriebsmittel für diese Explosionsgruppen. Elektrische Betriebsmittel, die für IIC zugelassen sind, dürfen auch für alle anderen Explosionsgruppen verwendet werden.

Temperaturklasse

Die maximale Oberflächentemperatur eines Betriebsmittels muss stets kleiner sein als die Zündtemperatur des Gas-, Dampf- oder Staubgemisches. Die Temperaturklasse ist deshalb ein Maß für die maximale Oberflächentemperatur eines Betriebsmittels.

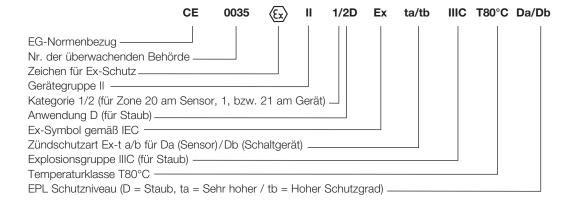
Temperaturklasse	Zündtemperatur °C	Höchste Oberflächen- temperatur °C
T1	> 450	450
T2	> 300	300
T3	> 200	200
T4	> 135	135
T5	> 100	100
T6	> 85	85

Geräteschutzniveau EPL

Eine zusätzliche Kennzeichnung bildet das neu hinzugefügte Geräteschutzniveau nach IEC 60079-14. (Equipment Protection Level, EPL). Auch über dieses Geräteschutzniveau wird die Eignung eines Feldgerätes für eine bestimmte Ex-Zone definiert. Hierbei gilt:

Zone (Gas-Ex)	EPL	Zone (Staub-Ex)	EPL	Schutznivea
0	Ga	20	Da	Höchstes
1	Gb	21	Db	Hohes
2	Gc	22	Dc	Normales

Beispiel: Ex d e IIC T6 Gb:

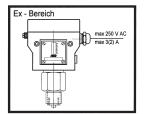

Gerät vorgesehen für Zone 1 für Gasgruppe IIC und Geräteschutzniveau Gas "Hohes Schutzniveau".

Kennzeichnung explosionsgeschützter elektrischer Betriebsmittel

Zusätzlich zu den normalen Daten (Hersteller, Typ, Serien-Nummer, elektrische Daten) sind die den Explosionsschutz betreffenden Daten in der Kennzeichnung enthalten!

Nach der Richtlinie 2014/34/EU (ATEX) ist in Anlehnung an die IEC-Empfehlung und aktueller Normenausgaben folgende Bezeichnungsweise vorhanden:

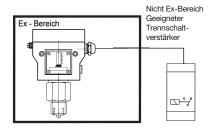
Beispiel für FEMA Druckschalter



Ex-Geräte

Drucküberwachung in explosionsgefährdeten Bereichen Zone 1, 2 und 20, 21, 22

FEMA-Druckschalter mit spezieller Ausstattung können auch im Ex-Bereich Zone 1, 2 und 20, 21, 22 eingesetzt werden. Folgende Alternativen sind möglich:



1. Zündschutzart Ex-d, Ex-e und Ex-t:

Der Druckschalter in Zündschutzart "Druckfeste Kapselung Ex-d und Erhöhte Sicherheit Ex-e" kann mit dem Schaltgerät in Ex-Bereichen der Zone 1 und 2 für zündfähige Gasgemische eingesetzt werden. Für den Einsatz bei Staub-Atmosphäre gilt die Zündschutzart "Schutz durch Gehäuse Ex-t". Hierbei darf das Schaltgerät in Ex-Bereichen der Zone 21 und 22 für zündfähige Stäube eingesetzt werden. Zusätzlich gilt für den Staub-Ex-Schutz Zone 20 am Sensor. (Gerät eingeschraubt in Behälterwände, wobei im Innenraum Dauerstaubatmosphäre vorkommen darf).

Die zulässigen Werte für Schaltspannung, Schaltleistung und Umgebungstemperatur entnehmen Sie bitte der näheren Beschreibung der Ex-Geräte, sowie der Montage- und Bedienungsanleitung. Darüber hinaus gelten die allgemeinen Regeln für den Einsatz und die Installation von Geräten in Ex-Atmosphäre.

Sonderschaltungen, sowie Ausführungen mit einstellbarer Schaltdifferenz oder interne Verriegelung (Wiedereinschaltsperre) sind nicht möglich.

2. Zündschutzart Ex-i

Alle Druckschalter mit Ausstattung für eigensichere Stromkreise können mit dem Schaltgerät in Ex-Bereiche der Zonen 1 und 2 (Gas), sowie 21 und 22 (Staub) eingesetzt werden. Zusätzlich dazu darf der Sensor in Ex-Bereiche der Zone 0 (Gas), bzw. 20 (Staub) eingeschraubt werden. (Gerät eingeschraubt in Behälterwände, wobei im Innenraum des Behälters Zone 0, bzw. Zone 20 definiert ist). Ein Stromkreis gilt als "eigensicher", wenn die darin geführte Energiemenge nicht in der Lage ist, einen zündfähigen Funken zu erzeugen. Dazu dürfen Druckschalter nur in Kombination mit einem passenden Trennschaltverstärker betrieben werden, welcher für die Zündschutzart Ex-i zugelassen ist. Für Druckschalter mit Widerstandskombination zur Leitungs- und Kurzschlussüberwachung müssen dafür geeignete Varianten gewählt werden. Wegen der geringen Spannungen und Ströme in eigensicheren Stromkreisen werden für Druckwächter (mit automatischer Rückschaltung) Mikroschalter mit Goldkontakten eingesetzt. Für Begrenzer (mit interner Verriegelung) werden Silberkontakte eingesetzt. FEMA Druckschalter für den Einsatz in eigensicheren Stromkreisen sind gekennzeichnet durch blaue Anschlussklemmen und Kabeleinführungen. Darüber hinaus wurden die Druckschalter durch eine "benannte Stelle" zugelassen. Die Geräte sind seriennummeriert und das Typenschild informiert über die Zündschutzart und Registriernummer.

Zündschutzarten für Drucküberwachung in Zone 0 (20), 1 (21) und 2 (22)

Druckfeste Kanselung Ev-de (EN 60079-0-2009)

Erhöhte Sicherheit Ex-e (EN60079-7:2007) Schutz durch Gehäuse Ex-t (EN60079-31:2009) Ex	D513,563 D574,576 (Goldkontakt, Wächter) D575,577 (Silberkontakt, Begrenzer)
Kennzeichnung:	Kennzeichnung:
C€ 0035	 € 0035
Ex-Zulassung für das Schaltgerät	Ex-Zulassung für Schaltgerät Ex- Zulassung für Trennschaltverstärker
Druckschalter mit Silberkontakten	Ausstattung mit Goldkontakten (Wächter)
Didokscriater thit diberkontakter	Ausstattung mit Silberkontakten (Wachter) Ausstattung mit Silberkontakten (Begrenzer)
Bemessungswerte:	Bemessungswerte ohne Widerstands-
max. 3A, 250VAC	kombination513 /563:
min. 2mA, 24VDC	Ui: 24VDC Ii: 100mA
	Ci: 1nF Li: 100µH
	Bemessungswerte mit Widerstandskombination574 /575 /576 /577:
	Ui: 14VDC Ri: 1500 Ohm
	Ci: 1nF Li: 100µH
Druckschalter wird innerhalb der Ex-Zone installiert	Druckschalter wird innerhalb der Ex-Zone installiert, der Trennschaltverstärker wird außerhalb der Ex-Zone installiert.

Figensicher Ey-i (FN 60079-11-2012)

Mechanische EX-Druckschalter

Typenübersicht

Туре	e	Medium	Druck-	Temperatur-	Richtlinien	Normgrundlage	Kommentare
. , ,			bereiche	bereich (Umgebung)	für CE		
	EX-DCM EX-DNM	nicht aggressive Flüssigkeiten und Gase	125 mbar. 110 bar, 1663 bar	-20+60°C	ATEX 2014/34/EU IECEx	DIN EN60730 DIN EN60079	Mechanischer Ex-d Druckschalter
ī	EX-DNS EX-VNS	aggressive Flüssigkeiten und Gase	-116 bar	-20+60°C	ATEX 2014/34/EU IECEX	DIN EN60730 DIN EN60079	Mechanischer Ex-d Druck-/Vakuum-schalter mit Edel-stahlsensor aus 1.4571
kapsel	EX-DDCM	Flüssigkeiten und Gase	4 mbar16 bar	-20+60°C	ATEX 2014/34/EU IECEx	DIN EN60730 DIN EN60079	MechanischerEx-d Differenzdruckwächter
druckfest-gekapselt	EX-VCM EX-VNM	Flüssigkeiten und Gase	-10,5 bar	-20+60°C	ATEX 2014/34/EU IECEx	DIN EN60730 DIN EN60079	Mechanischer Ex-d Vakuumschalter
druckf	EX-DGM	Brenngase	15250 mbar	-20+60°C	ATEX 2014/34/EU IECEx EU/2016/426	DIN EN 1854 DIN EN60730 DIN EN60079	Mechanischer Ex-d Druckwächter speziell geeignet für Brenngase nach DVGW Arbeitsblatt G 260
	EX-DWR	Dampf, Heißwasser, Brenngase und flüssige Brennstoffe	0,140 bar	-20+60°C	ATEX 2014/34/EU IECEX DGR 2014/68/EU EU/2016/426	VdTÜV Druck 100 DIN EN 1854 DIN EN12952-11 DIN EN12953-9 DIN EN 764-7 DIN EN60079	Mechanischer Ex-d Druckschalter, besonde- re Bauart durch Prüfung mit 2 Mio. Schaltspielen
	DCMx-5xx	nicht aggres- sive Flüssig- keiten und Gase	1 mbar63 bar	-25+60°C*	ATEX 2014/34/EU IECEx	DIN EN60730	Mechanischer Ex-i Druckschalter
	VCMx-5xx VNMx-5xx	Flüssigkeiten und Gase	-10,5 bar	-25+60°C*	ATEX 2014/34/EU IECEx	DIN EN60730	Mechanischer Ex-i Vakuumschalter
	VNSx-5xx DNSx-5xx	aggressive Flüssigkeiten und Gase	-116 bar	-25+60°C	ATEX 2014/34/EU IECEx	DIN EN60730	Mechanischer Ex-i Druck-/ Vakuum- schalter mit Edelstahl- sensor aus 1.4571
	DDCMx-5xx	Flüssigkeiten und Gase	4 mbar16 bar	-25+60°C	ATEX 2014/34/EU IECEx	DIN EN60730 DIN EN 60079	Mechanischer Ex-i Differenzdruckwächter
eigensicher	DWAMx-5xx	Dampf und Heißwasse	0,132 bar	-20+60°C	ATEX 2014/34/EU IECEx DGR 2014/68/EU	VdTÜV Druck 100 DIN EN 12952-11 DIN EN 12953-9	Mechanischer Ex-i Druckwächter und Druckbegrenzer
egie	DGMx-5xx	Brenngase	151,6 bar	-25+60°C	ATEX 2014/34/EU IECEX EU/2016/426	DIN EN 1854	Mechanischer Ex-d Druckwächter speziell geeignet für Brenn-gase nach DVGW Arbeitsblatt G 260
	DWRx-5xx	Dampf, Heißwasser, Brenngase und flüssige Brennstoffe	0,140 bar	-25+60°C	ATEX 2014/34/EU IECEX EU/2016/426 DGR 2014/68/EU	VdTÜV Druck 100 DIN EN 1854 DIN EN12952-11 DIN EN12953-9 DIN EN 764-7 DIN EN60079	Mechanischer Ex-i Druckschalter, besonde- re Bauart durch Prüfung mit 2 Mio. Schaltspielen
	FD16-326 FD16-327	Flüssiggas	316 bar	-25+60°C	ATEX 2014/34/EU IECEx DGR 2014/68/EU	VdTÜV Druck 100 DIN EN 764-7	Mechanischer Ex-i Maximaldruckbegrenzer für Flüssiggasanlagen
	*: -15+60°C für DCM4016-5DCM4025-5 VCM4156-5						

^{*: -15....+60°}C für DCM4016-5..,DCM4025-5.., VCM4156-5..

Ex-DCM / Ex-DNM

(Ex) II 2G Ex d e IIC T6 Gb

⟨⟨⟨x⟩ | I 1/2D Ex ta/tb | IIC T80 °C Da/Db

Dieser Universaldruckschalter ist sowohl im allgemeinen Maschinenbau und der Druckmaschinenindustrie einsetzbar, als auch in der Pneumatik und Hydraulik.

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (700) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

Werkstoffe der Druckfühler

Metallbalg: 1.4571 Fühlergehäuse: 1.4104 Ex-DCM4016/ Membrane: Perbunan Ex-DCM4025 Fühlergehäuse: 1.4301

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Umgebungstemp. am Schaltgerät

−20...+60 °C

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) oder an eine ebene Fläche mit 2 Schrauben 4 mm Ø.

Schaltdruck

Von außen mittels Schraubendreher einstell-

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250 V ~		250 V-	24 V -
Scriaiticisturiy	(ohm)	(ind)	(ohm)	(ohm)
Ex-d	3 A	2 A	0,1 A	3 A

Typenübersicht

Туре	Einstell- bereich	Schaltdifferenz (Toleranzspanne)	Max. zulässiger Druck	Medium- berührte Werkstoffe	Maß- zeich- nung
Schaltdifferenz	z nicht einste	llbar			S. 21+22
Ex-DCM4016	116 mbar	0,2 2 mbar	1 bar	Perbunan	4 + 11
Ex-DCM4025	425 mbar	0,2 4 mbar	1 bar	+ 1.4301	4 + 11

Weitere Ex-Geräte siehe nachfolgende Typenreihen, VCM, DNS, DDCM, DWR, DGM.

Туре	Einstell- bereich	Schaltdifferenz (Toleranzspanne)	Max. zulässiger Druck	Maß- zeich- nung	
Ex-DNM10	110 bar	0,05 0,3 bar	25 bar	4 + 17	
Ex-DNM63	1663 bar	0,2 2,0 bar	130 bar	4 + 16	

Justierung

Die Baureihe Ex-DCM/Ex-DNM ist bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Ex-DNS/Ex-VNS

⟨Ex⟩ II 2G Ex d e IIC T6 Gb

⟨⟨⟨x⟩ | II 1/2D Ex ta/tb | IIIC T80 °C Da/Db

Für die Überwachung und Regelung von Drücken in Anlagen der chemischen Industrie, der Verfahrenstechnik und überall dort, wo der Druck von aggressiven Flüssigkeiten und Gasen überwacht werden muss, eignen sich die Druckschalter der Baureihe DNS.

Alle Einzelteile des Fühlersytems bestehen aus hochwertigem Edelstahl (1.4571) und sind mit modernsten Verfahren ohne Zusatzwerkstoffe verschweißt. Der Druckfühler ist hermetisch gekapselt und enthält keinerlei Dichtungswerkstoffe.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (700) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 65

Werkstoffe der Druckfühler

Druckbalg und alle mediumsberührten Teile. X 6 Cr Ni Mo Ti 17122 Werkstoff-Nr. 1.4571

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Max. Umgebungstemperatur am Schaltgerät

−20...+60 °C.

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) an eine ebene Fläche mit 2 Schrauben, 4 mm ø

Schaltdruck

Von außen mittels Schraubendreher verstellbar.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250 V ~		250 V-	24 V –
	(ohm) (ind)		(ohm)	(ohm)
Ex-d	3 A	2 A	0,1 A	3 A

Kunststoffbeschichtung

Das Alu-Druckgussgehäuse aus GD AI Si ist chromatiert und mit beständigem Kunststoff einbrennlackiert. Korrosionstests mit 3 %-iger Salzlösung und 30 Temperaturwechseln von +10 bis +80 °C zeigten nach 20 Tagen keinerlei Veränderungen der Oberfläche.

Typenübersicht

Туре	Einstellbereich		Schaltdiffere (Toleranzsp		Max. zulässiger Druck	Maß- zeich- nung
Schaltdiffere	nz nicht einste	llbar				S. 21+22
Ex-VNS301	-250+100	mbar	10 60	mbar	3 bar	
Ex-VNS111	-1*+0,1	bar	10 65	mbar	6 bar	
Ex-DNS025	0,040,25	bar	20 37	mbar	6 bar	4 + 15
Ex-DNS06	0,10,6	bar	10 35	mbar	6 bar	
Ex-DNS1	0,21,6	bar	10 40	mbar	6 bar	
Ex-DNS3	0,22,5	bar	10 90	mbar	16 bar	4 + 18
Ex-DNS6	0,56	bar	0,05 0,2	bar	16 bar	4 + 10
Ex-DNS10	110	bar	0,05 0,3	bar	16 bar	4 + 17
Ex-DNS16	316	bar	0,05 0,3	bar	25 bar	4 + 1/

^{*} Bei sehr hohem Vakuum, nahe dem nur theoretisch möglichen Unterdruck von –1 bar, ist der Schalter wegen der besonderen Bedingungen der Vakuumtechnik nur unter Vorbehalt einsetzbar. Der Druckschalter selbst wird bei maximalem Unterdruck jedoch nicht beschädigt.

Justierung

Die Baureihen **Ex-DNS** und **Ex-VNS** sind bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

IECEx

Ex-DDCM1 (Edelstahlfühler)

Ex-DDCM

(Ex) II 2G Ex d e IIC T6 Gb

(II 1/2D Ex ta/tb IIIC T80 °C Da/Db

Die FEMA-Differenzdruckwächter eignen sich zur Überwachung und Regelung von Differenzdrücken, zur Strömungsüberwachung und zur automatischen Kontrolle von Filteranlagen. Ein Doppelkammersystem mit Nitrostahl-Balg bzw. Perbunan-Membrane erfasst den Unterschied der beiden anstehenden Drücke.
Der gewünschte Schaltdruck kann innerhalb der in der Typenübersicht genannten Bereiche stufenlos eingestellt werden. Alle Differenzdruckwächter sind auch im Unterdruckbereich einsetzbar. Die Schaltdifferenz ist nicht einstellbar.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Innengewinde G 1/4

Schaltgerät

Stabiles Gehäuse (700) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 65

Werkstoffe der Druckfühler

Ex-DDCM014-16: Druckbalg aus 1.4571 Fühlergehäuse aus 1.4305. Ex-DDCM252-6002: Membrane aus Perbunan. Fühlergehäuse aus Aluminium.

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Umgebungstemperatur am Schaltgerät

–20...+60 °C

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z. B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung oder an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Anschluss der druckführenden Leitungen beachten:

P(+) = hoher Druck

S(-) = niedriger Druck

Schaltdruck

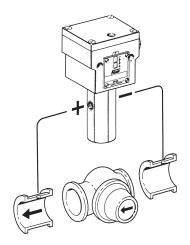
Von außen mittels Schraubendreher einstellbar.

Skala

Typen DDCM252–6002 ohne Skalenangabe. Einstellung nach Manometer.

	250	٧ ~	250 V-	24 V –	
Schaltleistung	(ohm)	(ind)	(ohm)	(ohm)	
Ex-d	3 A	2 A	0,1 A	3 A	

Туре	Einstellbereich (Differenz- druck)	Schaltdifferenz (Toleranzspanne)	Max.** zulässiger Druck	Medium- berührte Werkstoffe	Maß- zeich- nung
Schaltdifferenz r	nicht einstellbar				Seite 21 + 22
Ex-DDCM252*	425 mbar	0,7 6,5 mbar	0,5 bar		
Ex-DDCM662*	1060 mbar	0,5 13 mbar	1,5 bar	Aluminium	4 + 20
Ex-DDCM1602*	20160 mbar	0,5 15 mbar	3 bar	+ Perbunan	
Ex-DDCM6002*	100600 mbar	0,5 32 mbar	3 bar		
Ex-DDCM014*	-0,10,4 bar	20 200 mbar	15 bar		
Ex-DDCM1	0,21,6 bar	40 120 mbar	15 bar	Edelstahl	
Ex-DDCM4*	14 bar	50 300 mbar	25 bar	1.4305 +	4 + 21
Ex-DDCM6	0,56 bar	50 150 mbar	15 bar	1.4571	
Ex-DDCM16	316 bar	50 400 mbar	25 bar		


^{*} keine Skaleneinteilung (nur ± Skala)

Zubehör: · Verschraubung mit Einschraubnippel G 1/4"/8 mm MAU8/Ms und MAU8/Nst. S. 145

· Ventilkombinationen VKD3 und VKD5, S. 144

Justierung

Die Baureihe **Ex-DDCM** ist bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Anwendungsbeispiel Pumpenüberwachung

Der Differenzdruckschalter (z. B. Ex-DDCM1) überwacht den Differenzdruck über die Pumpe. Bei Unterschreiten einer einstellbaren Schaltschwelle wird abgeschaltet. Die Pumpenüberwachung ist unabhängig vom statischen Druck in der Anlage.

^{**} auch einseitig belastbar

Ex-VCM/Ex-VNM

(x) II 2G Ex d e IIC T6 Gb

⟨E⟩ II 1/2D Ex ta/tb IIIC T80 °C Da/Db

Die FEMA-Unterdruckschalter erfassen den Druckunterschied gegenüber dem Atmosphärendruck. Alle Angaben über Schaltdruckbereiche und damit auch die Skaleneinteilungen an den Schaltgeräten sind deshalb als Druckdifferenz zwischen dem jeweiligen Atmosphärendruck und dem eingestellten Schaltdruck zu verstehen. Der Bezugspunkt "Null" auf der Geräteskala entspricht dem jeweiligen Atmosphärendruck.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1.

Schaltgerät

Stabiles Gehäuse (700) aus seewasserbeständigem Aluminium-Druckguss GD Al Si 12.

Schutzart

IP 65

Werkstoffe der Druckfühler

Ex-VNM111 und Ex-VNM301: Fühlergehäuse: 1.4104 Metallbalg aus Cu Zn und 301: Fuhlergehäuse aus CuZn Fühlergehäuse aus CuZn Membrane aus Perbunan Fühlergehäuse: 1.4301

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Umgebungstemp. am Schaltgerät -20...+60 °C

Max. Mediumstemperatur

Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen Umgebungstemperatur am Schaltgerät sein. Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B. Wassersackrohr) obige Grenzwerte am Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) oder an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Schaltdruck

Von außen mittels Schraubendreher einstellbar.

Kontaktbestückung

Einpoliger Umschalter.

Schaltleistung	250 V ~		250 V-	24 V –	
Containioiotang	(OHIII)	(IIIII)	(OHIII)	(OHIII)	
Ex-d	3 A	2 A	0,1 A	3 A	

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässiger Druck	Maß- zeich- nung
Schaltdifferen	z nicht einstellbar			Seite 21 + 22
Ex-VCM4156	-15+6 mbar	0,2 3,5 mbar	1 bar	4 + 11
Ex-VCM301	-250+100 mbar	2 25 mbar	1,5 bar	4 + 13
Ex-VNM301	-250+100 mbar	2 25 mbar	3 bar	4 + 15
Ex-VCM101	-1*+0,1 bar	10 40 mbar	3 bar	4 + 14
Ex-VCM095	-0,9+0,5 bar	10 50 mbar	3 bar	4 + 14
Ex-VNM111	-1*+0,1 bar	10 40 mbar	6 bar	4 + 15

^{*} Bei sehr hohem Vakuum, nahe dem nur theoretisch möglichen Unterdruck von –1 bar, ist der Schalter wegen der besonderen Bedingungen der Vakuumtechnik nur unter Vorbehalt einsetzbar. Der Druckschalter selbst wird bei maximalem Unterdruck jedoch nicht beschädigt.

Justierung

Die Baureihen **Ex-VCM** und **Ex-VNM** sind bei fallendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei fallendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz höher. (Siehe auch S. 23, 1. Justierung am unteren Schaltpunkt.)

Ex-DWR

(Ex) II 2G Ex d e IIC T6 Gb

II 1/2D Ex ta/tb IIIC T80 °C Da/Db

Besonders als Druckwächter oder Druckbegrenzer für Brenngase (DGVW-Arbeitsblatt G 260) und flüssige Brennstoffe (z.B. Heizöl) sowie für Dampfanlagen nach TRBS und Heißwasser Anlagen nach DIN EN12828, für Anlagen nach DIN EN12952-11 und DIN EN12953-9. Der DWR dient der Maximaldruck- und Minimaldrucküberwachung. Dieser Druckschalter nach "besonderer Bauart" verfügt über eine Prüfung mit 2 Mio. Schaltspielen. TÜV und DVGW - Prüfung ist vorhanden.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 (Manometeranschluss) nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1 (für Gasanwendungen Innengewinde nur bis 4 bar zulässig).

Schaltgerät

Stabiles Gehäuse (700) aus seewasserbeständigem Aluminium-Druckguss.

Werkstoffe

Druckbalg: Werkstoff-Nr. 1.4571 Fühlergehäuse: Werkstoff-Nr. 1.4104 Schaltgehäuse: GD Al Si 12 (DIN 1725)

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Umgebungstemperatur am Schaltgerät $-20 \text{ bis } +60 \, ^{\circ}\text{C}$

Mediumstemperatur –25...+60 °C.
Die max. Mediumstemperatur am Druckfühler darf höchstens gleich der zulässigen
Umgebungstemperatur am Schaltgerät sein.
Höhere Mediumstemperaturen sind möglich, wenn durch geeignete Maßnahmen (z.B.
Wassersackrohr) obige Grenzwerte am
Schaltgerät sichergestellt sind.

Montage

Direkt auf Druckleitung (Manometeranschluss) o. an eine ebene Fläche mit 2 Schrauben, 4 mm ø.

Berstdruck

Bei allenTypen ≥ 100 bar, nachgewiesen durch TÜV-Prüfung.

Kontaktbestückung Einpoliger Umschalter.

Schaltleistung				24 V -	
Containioistang	(ohm)	(ind)	(ohm)	(ohm)	
Ex-d	3 A	2 A	0,1 A	3 A	

Ex-Zündschutzart

Ex de IIC T6

Schutzart

IP 65, Einbaulage nur senkrecht.

nwendung	

Dampf Heißwasser Brenngase Druckbehälter Anlagen nach TRD 604 Anlagen nach DIN EN12828 DVGW-Arbeitsblatt G 260 DIN EN 764-7

Funktion

Wirkungsrichtung

Sensor

Druckwächter oder Druckbegrenzer (mit externer Verriegelung)

Für Maximaldruck- und Minimaldrucküberwachung (DWFS, SDBFS)

"Besondere Bauart" durch Prüfung mit 2 Mio. Schaltspielen.

Typenübersicht

Туре	Einstellberei	ch Schaltdiffe (Toleranzs		maler ebsdruck	Maß- zeich- nung
Schaltdifferen	z nicht einste	ellbar			S. 21+22
Ex-DWR06	0,10,6 ba	ar 10 50	mbar 6	bar	4 + 15
Ex-DWR1	0,21,6 ba	ar 10 60	mbar		
Ex-DWR3	0,22,5 ba	ar 20 100	mbar 16	bar	4 + 18
Ex-DWR6	0,56 ba	ar 30 300	mbar		
Ex-DWR625	0,56 ba	ar 20 300	mbar 25	bar	4 + 17
Ex-DWR16	316 ba	ar 0,2 0,6	bar		
Ex-DWR25	425 ba	ar 0,1 1,5	bar 63	bar	4 + 16
Ex-DWR40	840 ba	ar 0,1 1,6	bar		

Justierung

Die Baureihe **Ex-DWR** ist bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger.

Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.

Ex-DGM525

Ex-DGM

(Ex) II 2G Ex d e IIC T6 Gb

⟨ II 1/2D Ex ta/tb IIIC T80 ° C Da/Db

DVGW- geprüft nach DIN EN1854. Die Gasdruckwächter sind für alle Gase nach DVGW- Arbeitsblatt G 260 und für Luft geeignet.

SIL 2 gemäß IEC 61508-2

Technische Daten

Druckanschluss

Außengewinde G 1/2 nach DIN 16 288 und Innengewinde G 1/4 nach ISO 228 Teil 1 (zulässig bis 4 bar).

Schaltgerät

Seewasserbeständiger Aluminium-Druckguss GD AI Si 12.

Schutzart

Werkstoffe der Druckfühler

siehe Typenübersicht.

Umgebungstemperatur

−20 bis +60 °C

Bei Umgebungstemperaturen unter 0 °C ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen

Max. zulässiger Betriebsdruck

siehe Typenübersicht.

Montage

Entweder direkt auf die Rohrleitung oder mit 2 Schrauben, 4 mm ø, an Wandfläche.

Einbaulage

Senkrecht mit Schaltgerät nach oben.

Einstellung

Mittels Schraubendreher an Stellspindel stufenlos einstellbar. Der eingestellte Schaltdruck ist im Skalenfenster sichtbar.

Plombiermöglichkeit P2

Auf Wunsch (auch nachträglich zu montieren).

Schaltdifferenzen

Weitgehend unabhängig vom eingestellten Schaltdruck. Nicht verstellbar. Werte siehe Typenübersicht.

Schaltleistung	250	٧ ~	250 V-	24 V –	
ocharticistung	(ohm)	(ind)	(ohm)	(ohm)	
Ex-d	3 A	2 A	0,1 A	3 A	

Druckmessstutzen

Es muss dafür gesorgt sein, dass an geeigneter Stelle der Gasverbrauchseinrichtung ein Druckmessstutzen zur Verfügung steht.

Anwendung

Prüfgrundlage **Funktion**

Brenngase nach DVGW-Arbeitsblatt G 260

DIN EN1854

Druckwächter

Wirkungsrichtung

Für Maximaldruck- und Minimaldrucküberwachung

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. Betriebs- druck	Medium- berührte Werkstoffe	Maß- zeich- nung
					S. 21+22
Ex-DGM506	1560 mbar	7 11 mbar	5 bar	1.4104	
Ex-DGM516	40160 mbar	3 18 mbar	5 bar	1.4104	4 + 12
Ex-DGM525	100250 mbar	3 18 mbar	5 bar	1.4104	

Justierung

Die Baureihe Ex-DGM ist bei steigendem Druck grundjustiert. Das bedeutet, der einstellbare Schaltdruck auf der Skala entspricht dem Schaltpunkt bei steigendem Druck, der Rückschaltpunkt ist um die Schaltdifferenz niedriger. (Siehe auch S. 23, 2. Justierung am oberen Schaltpunkt.)

Weitere Druckbereiche siehe Typenreihe Ex-DWR..., S. 66

IECEx

HCD6010

HCD

Druck- und Differenzdruckwächter für Luft und Brenngase

Die Druckschalter der Baureihe HCD eignen sich für neutrale und nicht aggressive Gase. Sie können zur Überwachung von Überdruck und Differenzdruck eingesetzt werden. Bei Überdruckerfassung wird druckseitig am unteren Anschlussstutzen G 1/4", bei Unterdruckerfassung am oberen Anschlussstutzen G 1/8" (Verschlussklammer entfernen) angeschlossen. Bei Differenzdruckerfassung wird der hohe Druck am unteren Anschlussstutzen

(G 1/4") und der niedrige Druck am oberen Anschlussstutzen (G 1/8") angelegt. Für genaue Sollwerteinstellung steht ein Druckmessstutzen (ø 9 mm) zur Verfügung. Der Druckschalter ist nach der EG-Gasgeräterichtlinie EU/2016/426 und DIN EN1854 geprüft und vom DVGW für Luft und für Brenngase nach DVGW-Arbeitsblatt G 260 zugelassen.

Technische Daten

Druckanschluss

Druckanschluss für Überdruck: G 1/4", Innengewinde. Für Unterdruck und Differenzdruck: G 1/8", Innengewinde.

Schaltgehäuse

Aluminium-Druckguss

Membrane: NBR.

Mediumstemperatur

-15 bis +60 °C.

Maximal zulässiger Betriebsdruck

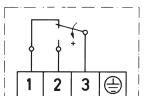
siehe Typenübersicht.

Einbaulage

Waagrecht mit nach unten zeigendem Anschlussstutzen

Schutzart IP 40 nach DIN 40050.

Montage

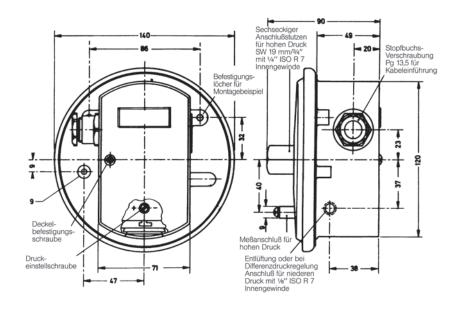

Entweder direkt auf Rohrleitung oder mit Montagebügel (wird mitgeliefert) an eine senkrechte Fläche.

Schaltpunkt-Einstellung

Deckel abnehmen und die mit +/- gekennzeichnete Einstellungsspindel in die entsprechende Richtung drehen. Die Skala zeigt nur Richtwerte, für genaue Sollwerteinstellungen ist ein Manometer erforderlich, das am Messanschluss (Druckmessstutzen 9 mm ø) angeschlossen werden kann.

Schaltfunktion Einpolig umschaltend.

Elektrischer Anschluß


Schaltleistung 2 A/220–240 V AC (induktive Belast.) 10 A/220-240 V AC (ohm'sche Belast.)

Kabeleinführung Pg 13,5

Туре	Einstellbereich	Schaltdifferenz im unteren Bereich	im oberen Bereich	Max. Betriebs- druck
HCD6003	0,23 mbar	0,3 mbar	0,5 mbar	100 mbar
HCD6010 HCD6050	110 mbar 550 mbar	0,5 mbar 1.2 mbar	1 mbar 2,5 mbar	100 mbar 200 mbar
HCD6150	15150 mbar	3,5 mbar	10 mbar	300 mbar

Die Schaltdifferenz ist nicht einstellbar. Die niedrigen Schaltdifferenzen gelten für den unteren Einstellbereich, die höheren Werte ergeben sich bei den oberen Bereichen.

Maßzeichnung* (Angaben in mm)

* Diese Druckschalter können nur in der hier angeführten Bauform geliefert werden. Zusatzfunktionen sind nicht möglich

DPS

Differenzdruckschalter für die Luft- und Klimatechnik (nicht einsetzbar für Brenngas)

Differenzdruckschalter für Filter-, Ventilatoroder Luftströmungsüberwachung bei Klimaund Lüftungsanlagen, geprüft nach der EG-Gasgeräterichtlinie EU/2016/426 und DIN EN 1854.

Technische Daten

Druckanschluss

Kunststoffstutzen mit 6 mm Außendurchmesser für Messschlauch mit 5 mm Innendurchmesser. Stutzen P 1 für höheren Druck, P 2 für niedrigeren Druck.

Druckmedium

Luft sowie nicht brennbare und nicht aggressive Gase.

Membrane

aus gesintertem Silikon ist ausgasungsresistent. Schaltkinematik befindet sich auf "P2"-Seite.

Schaltgehäuse und medienberührte Teile Schaltgehäuse und Druckanschluss P 2 aus PA 6.6. Unterteil und Druckanschluss P 1 aus POM

Mediums- und Umgebungstemperatur $-20~^{\circ}\text{C}$ bis $+85~^{\circ}\text{C}$

(Lagertemperatur -40 °C bis +85 °C)

Maximal zulässiger Betriebsdruck 100 mbar für alle Typen.

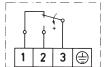
Einbaulage

senkrecht, Druckanschlüsse nach unten. (Bei waagrechter Einbaulage mit Deckel nach oben, liegen die Skalenwerte 20 Pa unter den tatsächlichen Werten, bei waagrechter Montage mit Deckel nach unten liegen die Skalenwerte 20 Pa höher. Bei Einstellwerten unter ca. 50 Pa unbedingt senkrecht montieren!).

Schutzart: IP 54

Montage

Mittels im Gehäuse integrierter Befestigungsstutzen mit 2 Schrauben direkt auf eine senkrethe Fläche, z.B. des Klimagerätes oder des Luftkanals. Bei Montage im Deckenbereich gegebenenfalls L-Winkel verwenden.


Schaltpunkt-Einstellung

Deckel abnehmen und Skala auf gewünschten Wert stellen. Die Einstellwerte beziehen sich auf den oberen Schaltpunkt (für Maximaldrucküberwachung). Bei Minimaldrucküberwachung liegt der Schaltpunkt entsprechend der Schaltdifferenz unterhalb des Einstellwertes.

Gewicht: 160 g

Schaltfunktion: einpolig umschaltend.

Elektrischer Anschluss

FEMA

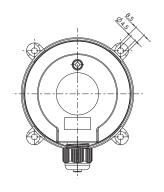
Flachstecker 6,3 x 0,8 DIN 46 244 oder mitgelieferte Schraubklemmen verwenden.

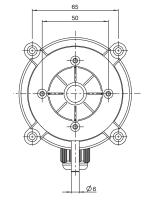
Min. Schaltleistung: 5~mA/5~V DC Max. Schaltleistung: 1,5~(0,4)~A / 250~V AC

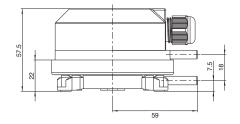
Kabeleinführung: M 16 x 1,5 **Leistungsdurchmesser:** 5-10 mm

Typenübersicht

Туре	Einstellbereich für oberen Schaltdruck	Schaltdifferenz (Richtwerte)	
DPS200	0,22 mbar	0,1 mbar	
DPS400	0,44 mbar	0,2 mbar	
DPS500	0,55 mbar	0,2 mbar	
DPS1000	210 mbar	1 mbar	
DPS2500	525 mbar	1,5 mbar	


DVGW-Prüfzertifikat


EG-Baumusterprüfung nach EG-Gasgeräterichtlinie (EU/2016/426) und DIN EN1854,


Mitgeliefertes Zubehör DPSA:

- 2 m Silikonschlauch (Ø i = 5 mm), 2 Anschlussstutzen mit Befestigungsschrauben,
- 2 selbstschneidende Schrauben zur Befestigung des Gehäuses
- 3 Schraubklemmen für den elektrischen Anschluss

Maßzeichnung (Angaben in mm)

Elektronische Druckschalter und Drucktransmitter

Produktübersicht

Туре	Medium	Druck- bereiche	Temperatur- bereich (Medium)	Richtlinien für CE	Norm- grundlage	Ausgänge	Kommentare	Seite
Smart DCM PSHR	Flüssigkeiten und Gase	-140 bar	-20+80°C	2004/108/EG	EN61326-1 EN61326-2-3	1 x Open Collector	Elektronischer Druckschalter Mediumberührte Teile: Edelstahl (1.4571)	72 – 73
Smart DCM DIFF PSHD	Flüssigkeiten und Gase	020 bar	-20+80°C	2004/108/EG	EN61326-1 EN61326-2-3	1 x Open Collector	Elektronischer Differenzdruck- schalter Medium- berührte Teile: Edelstahl (1.4404)	74 – 75
Smart Press PST PST	Flüssigkeiten und Gase	-1600 bar	-20+100°C	2004/108/EG 2006/95/EG	EN61326-1 EN60730-1	2 x Open Collector 0/420 mA 0/210 V 2 x Open Collector 1 x Wechsel- kontakt	Elektronischer Druckschalter / Drucktransmitter 3-Leiter Medium- berührte Teile: Edel- stahl (1.4571 und 1.4435 (< 250bar)), (1.4571 und 1.4542 (250 + 600bar))	76 – 81
Smart SN PTSR PTHR	Flüssigkeiten und Gase	-140 bar	-20+80°C	2004/108/EG	EN61326-1 EN61326-2-3	0/420 mA 0/210 V	Mikroprozessor- unterstützter Druck- transmitter 2- und 3-Leiter Medium- berührte Teile: Edelstahl (1.4571)	86 – 87
Smart SN DIFF PTHD PTSD	Flüssigkeiten und Gase	020 bar	-20+80°C	2004/108/EG	EN61326-1 EN61326-2-3	0/420 mA 0/210 V	Mikroprozessor- unterstützter Diffe- renzdrucktransmitter 2- und 3-Leiter Mediumberührte Teile: Edelstahl (1.4404)	88 – 89
PTI	Flüssigkeiten	040 bar	-30+125°C	2014/30/EU	EN61326-1	420 mA	Drucktransmitter 2-Leiter, Medium- berührte Teile: 1.4305	90 – 91
PTU	Flüssigkeiten	040 bar	-30+125°C	2014/30/EU	EN61326-1	010 V	Drucktransmitter 2-Leiter, Medium- berührte Teile: 1.4305	90 – 91
DTI/ DTU	Flüssigkeiten und Gase	010 bar	-15+100°C	2014/30/EU	EN61326-1 EN61326-2-3	420 mA 010 V	Differenzdrucktrans- mitter 2- und 3-Leiter Mediumberührte Teile: 1.4571, 1.4435, 1.4305	92 - 93
DPTE	Luft und nicht aggressive Gase	-5010.000 Pa -0,5100 mbar	050°C	2004/108/EG	EN61326-1	420 mA 010 V	Differenzdrucktrans- mitter 2- und 3-Leiter Mediumberührte Teile: Kunststoff POM	94
DPTA	Luft und nicht aggressive Gase	-2550 Pa -0,250,5 mbar	050°C	2004/108/EG	EN61326-1	420 mA 010 V	Differenzdruck- transmitter mit auto- matischer Nullpunkt- korrektur 3-Leiter Mediumberührte Teile: Kunststoff POM	95
DPTAQ8	Luft und nicht aggressive Gase	-501000 Pa -0,510 mbar	050°C	2004/108/EG	EN61326-1	420 mA 010 V	8-Bereich Differenz- drucktransmitter mit automatischer Nullpunktkorrektur 3-Leiter Mediumbe- rührte Teile: Kunst- stoff POM	95

Mit Anzeige und Bedienfeld

Smart DCM

Elektronischer Druckschalter

Die robusten, mikroprozessorunterstützten elektronischen Druckschalter der Baureihe Smart DCM von Honeywell FEMA messen Relativdrücke in Bereichen von -1...+1 bar und 0–40 bar. Sie eignen sich besonders für die Regelung von Systemdrücken in den Bereichen Maschinenbau, Versorgungstechnik, Umwelttechnik, Heizungs-Lüftungs-Klimatechnik.

Der Einbau der Geräte erfolgt über ein G1/2" Außengewinde direkt in die Druckleitung. Einfache Eingabe der Schaltpunkte über großzügig dimensionierte Tastatur und grafisches Display.

Technische Daten

Messbereiche

relativ -1...+ 40 bar **Umgebungstemperatur:** -20...+70 °C **Lagertemperatur:** -30...+80 °C **Mediumstemperatur** -20...+80 °C **Relative Luft-** 0...95 %

feuchtigkeit nicht kondensierend
Gesamtgenauigkeit 0,5 % vom Endwert
Gewicht: 350 Gramm
Mediumberührte Teile Edelstahl (1.4571)

Prozessanschluss

Manometeranschluss G1/2" Außengewinde

Elektrischer Anschluss

Steckanschluss 5-polig M12x1
Schutzklasse III gemäß EN 61140

Schutzart:IP 65Spannungsversorgung18...35 VdcEMVgemäß EN 61326

Mechanische Stabilität

Schock

Vibration 20g gemäß IEC

68-2-6 (bis 2000 Hz)

100g gemäß IEC

68-2-27

Schaltausgang Open-Collector

Open Collector Schaltausgang

Schaltlast 250 mA (gegen Über-

strom geschützt) Vversorg -2 V

Oberer Wert (min.) Vversorg -2 V
Unterer Wert (max.) GND +0,5 V
Schaltdifferenz SP und RP über

Menü frei wählbar

Warnausgang Pin 2 Gehäuse und Deckel PA66 GF25

Funktionsumfang

- · Konfiguration des Open Collector Schaltausgangs als:
 - ☐ Minimaldruckwächter,
 - Maximaldruckwächter,
 - □ Druckfensterüberwachung
- · Konfiguration des Schaltkontaktes als:
 - □ Öffner
 - Schließer
- · Einstellung von Schalt- und Rückschaltpunkt über den gesamten Druckbereich
- · Ein- und Ausschaltverzögerung
- · Simulationsmodus
- · Geräte sind kundenseitig einfach konfigurierbar

Anzeigefunktionen Smart DCM

- · In 90°-Schritten per Software drehbares grafisches Display.
- · Anzeige des aktuellen Druckes
- · Anzeige des Schaltzustandes
- · WARN-Signalisierung durch 2-farbige Hintergrundbeleuchtung

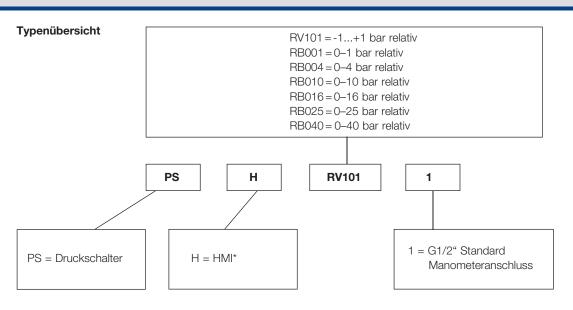
Sonstige Funktionen:

- · Restore-Funktion
- · Warn-Funktion bei Unplausibilität der Schaltpunkte, Fühlerdefekt, Überlastung und Überhitzung
- · Manueller Nullpunktabgleich
- · Verriegelung über 4-stelligen Code

Elektrischer Anschluss:

- · 5-poliger M12x1 Steckeranschluss, Form A
- \cdot Mittelpin elektrisch nicht anschließbar
- · M12x1 Kupplung im Lieferumfang enthalten

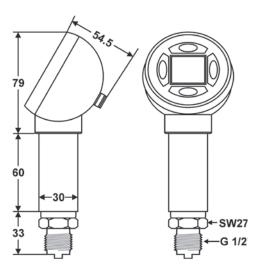
Hinweis:


Reaktionszeit: 100ms

Druckschläge, die kürzer als die Reaktionszeit von 100 ms andauern, werden nicht als Peak (Spitzenwert) erfasst und abgespeichert.

Abhilfe für Druckschläge kann ein vorgebauter Druckstoßminderer DMW leisten.

Schutzart: IP 65


Flüssigkeiten und Gase

Elektronische Druckschalter

* HMI = **H**uman **M**achine Interface = Digitalanzeige + Dateneingabe per Drucktasten

Туре	Druck in bar	Max. zul. Druck (bar)	
PSHRV1011	-1+1	4	
PSHRB0011	01	4	
PSHRB0041	04	8	
PSHRB0101	010	20	
PSHRB0161	016	32	
PSHRB0251	025	50	
PSHRB0401	040	80	

Maßzeichnung (Angaben in mm)

Smart DCM DIFF

Elektronischer Differenzdruckschalter

Die mikroprozessorunterstützten elektronischen Differenzdruckschalter der Baureihe Smart DCM DIFF von Honeywell FEMA messen Differenzdrücke und Relativdrücke in 6 Druckstufen von 0-100 mbar bis 0-20 bar.

Elektronische Differenzdruckschalter sind bestens geeignet für vielfältige Einsatzbereiche, u. a. zur genauen Erfassung, Überwachung und Regelung von Differenzdrücken. Hierzu zählen in erster Linie Anwendungen der Pumpen- und Filterüberwachung.

Technische Daten

Messbereiche relativ 0-100 mbar

bis 0-20 bar

Umgebungstemperatur -20...+70 °C

Lagertemperatur -30...+80 °C

Mediumstemperatur -20...+80 °C **Relative Luft-**0...95 %

feuchtigkeit nicht kondensierend Genauigkeit

1,00 %, ausgenommen PSHDM1002

Gewicht 450 Gramm

Mediumberührte Teile Edelstahl 1.4404,

(AISI 316 L)

Prozessanschluss 2x G1/4"

Innengewinde

Elektrischer Anschluss 5-poliger M12x1-

Stecker, "A"

III gemäß EN 61140 Schutzklasse

(PELV)

Schutzgrad IP65

Klimaklasse

Innenräume 4K4H gemäß

EN 60721-3-4

3K8H gemäß Im Freien

EN 60721-3-3

Mechanische Stabilität

Vibration 20g gemäß IEC

68-2-6 (bis 2000 HZ)

50g gemäß IEC Schock

68-2-27

Spannungsversorgung 18...35 Vdc,

max. 30 mA

Open Collector Schaltausgang

Schaltlast 250 mA (gegen

Überstrom geschützt)

SP und RP im Menü

Oberer Wert (min.) Vversorg - 2 V Unterer Wert (max.) GND + 0.5 VAntwortzeit max. 300 ms

frei wählbar

Gehäuse und Deckel PA66 GF25. Chemische

Beständigkeit 4C4

gemäß EN 60721-3-4 Displayglas PMMA (Plexiglas)

Folientastatur Polvester

Funktionsumfang

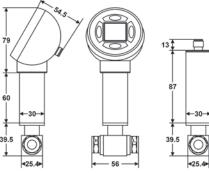
- · Konfiguration des Open Collector Schaltausgangs als:
 - ☐ Minimaldruckwächter,
 - ☐ Maximaldruckwächter,
 - ☐ Druckfensterüberwachung
- · Konfiguration des Schaltkontaktes als:
 - □ Öffner
 - Schließer
- · Einstellung von Schalt- und Rückschaltpunkt über den gesamten Druckbereich
- · Ein- und Ausschaltverzögerung
- · Simulationsmodus
- · Geräte sind kundenseitig einfach konfigurierbar

Anzeigefunktionen Smart DCM DIFF

- · In 90°-Schritten per Software drehbares grafisches Display.
- · Anzeige des aktuellen Druckes in bar, Pa, psi, %
- · Anzeige des Schaltzustandes
- · WARN-Signalisierung durch 2-farbige Hintergrundbeleuchtung

Sonstige Funktionen:

- · Restore-Funktion
- · Warn-Funktion bei Unplausibilität der Schaltpunkte, Fühlerdefekt, Überlastung und Überhitzung
- · Manueller Nullpunktabgleich
- · Verriegelung über 4-stelligen Code.

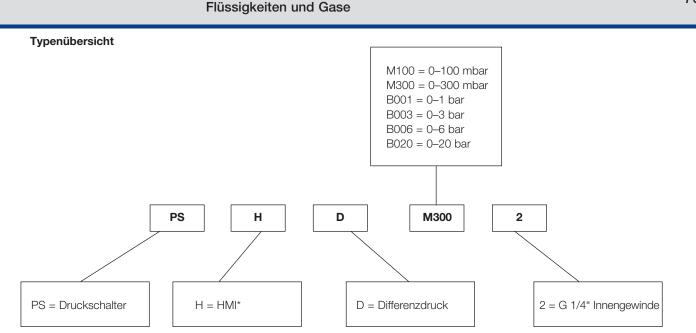

Elektrischer Anschluss:

- · 5-poliger M12x1 Steckeranschluss, Form A
- · Mittelpin elektrisch nicht anschließbar
- · M12x1 Kupplung im Lieferumfang enthalten

Maßzeichnung (Angaben in mm)

Hinweis:

CE


Reaktionszeit: 100ms

Druckschläge, die kürzer als die Reaktionszeit von 100ms andauern, werden nicht als Peak (Spitzenwert) erfasst und abgespeichert. Abhilfe für Druckschläge kann ein vorgebauter Druckstoßminderer DMW leisten.

Schaltdifferenz

Druckschalter

Elektronische Druckschalter

* HMI = Human Machine Interface = Digitalanzeige + Dateneingabe per Drucktaste

Туре	Messbe- reich (bar)	max. zul. Differenz- druck (bar)	Überdruck * (bar)	Berstdruck ** zw. "high" und "low" (bar)	Max. zul. Anlagen- druck (bar)	max. zul. Differenz- druck zw. "low" und "high" (bar)	Berstdruck ** zw. "low" und "high" (bar)
PSHDM1002	0-0,100	0,2	> 0,2< 0,4	≥ 0,4	70	< 0,4	≥ 0,4
PSHDM3002	0-0,300	0,6	> 0,6 < 1,2	≥ 1,2	70	< 1,2	≥ 1,2
PSHDB0012	0-1	2,0	> 2,0 < 4,0	≥ 4,0	70	< 4,0	≥ 4,0
PSHDB0032	0-3	06,0	> 6,0 < 12,0	≥12,0	70	< 8,0	≥ 8,0
PSHDB0062	0-6	12,0	> 12,0 < 24,0	≥ 24,0	70	< 8,0	≥ 8,0
PSHDB0202	0-20	040,0	> 40,0 < 80,0	≥ 80,0	70	< 8,0	≥ 8,0

^{*:} Fehlermeldung "error13" (behebbar); **: Fehlermeldung "error13" (nicht behebbar)

Messbereich:

Definierte Differenzdruckmessbereiche, indem das Gerät zuverlässig messen kann. Differenzdrücke, welche diese Werte überschreitet, werden nicht mehr zuverlässig gemessen. Innerhalb des Messbereiches funktioniert der Differenzdruckschalter gemäß seiner Spezifikation. Der Messbereich findet sich auch in der Bestellbezeichnung wieder. Z.B. PSHDM3002 bedeutet Messbereich 0-300 mbar.

Maximal zulässiger Differenzdruck:

Überdruckbereich, definiert als maximal zuläsiger Differenzdruck zwischen den Anschlüssen "L" und "H". Differenzdrücke innerhalb dieses Bereiches führen erfahrungsgemäß nicht zu einer Beeinträchtigung der Messgenauigkeit. Differenzdrücke welche diesen Bereich überschreiten, können die Genauigkeit der Sensorik beeinflussen und/oder die konstruktiven Eigenschaften dauerhaft verschlechtern.

Berstdruck:

Der Berstdruck ist definiert als Differenzdruck, welcher die Beschädigung des Sensors zur Folge hat. Differenzdrücke, die die Berstdruckgrenzen überschreiten, führen zur Beschädigung der Sensorik.

Maximal zulässiger Systemdruck:

Anlagendruck, welcher gleichzeitig an beiden Druckanschlüssen "H" und "L" angeschlossen werden darf, ohne das Sensorelement zu dejustieren oder langfristig zu schädigen. Darüber hinaus darf der Druck überdruckseitig "H" bis zum maximal zulässigen Differenzdruck aufgelastet werden, ohne dass die Sensorik dejustiert oder langfristig geschädigt wird.

Achtung:

Bestimmungsgemäß muss der niedrige Druck bei "L" - und der hohe Druck bei "H" angeschlossen werden. Vertauschen der Druckanschlüsse (Anschluss der höheren Druckes am Eingang für niedrigeren Druck "L") kann ab max. zul. Differenzdruck bei Überdruck am "L"-Druckanschluss (siehe obige Tabelle) zur Beschädigung der Messzelle führen.

Smart Press PST-R

Elektronischer Druckschalter/Drucktransmitter

Der äußerst flexibel und in nur zwei Modi einstell- und konfigurierbaren Druckschalter der Honeywell FEMA-Serie PST...R findet ihren Einsatz in der Feinabstimmung und Überwachung von Systemdrücken im Anlagenbau, der Fluidik, der Verfahrenstechnik und in der Pneumatik, sowie in der Überwachung und Steuerung von Pumpen und Verdichtern. Alle Geräte sind mit einer WARN-Systematik ausgerüstet und mit einem

standardisierten 20 mA-Warnausgang ausgestattet. Dadurch finden die Geräte auch in Fertigungseinrichtungen der Automobilindustrie, sowie im weiten Bereich des Werkzeug- und Sondermaschinenbaues ihren Einsatz. Mit einer Gesamtgenauigkeit von 0,5 % vom Endwert eignet sich der Druckschalter/Transmitter auch zur Überwachungsmessung für viele Anwendungen im Labor

Technische Daten

Messbereiche Umgebungstemperatur -20...+60 °C Lagertemperatur -20...+100 °C Mediumtemperatur 0...95 % Relative Luftfeuchtigkeit nicht kondensierend Gesamtgenauigkeit ≤ 0,5 % vom Endwert

Vakuum

Medienberührte Teile 1.4571 und 1.4542 (250-600 bar), 1.4571 und 1.4435 (< 250 bar und front-

bündig)

-1...+600 bar

-35...+80 °C

vakuumfest

Prozessanschlüsse Manometeranschluss G 1/2" Außengewinde Quasi-frontbündig G 3/4" Außengewinde Elektrische Anschlüsse PST...R

2 x 5-poliger M 12 Stecker gemäß DIN IEC 60947-5-2 (als Zubehör erhält lich) Zusätzlicher

3-poliger M 12 Stecker (als Zubehör erhältlich)

Schutzklasse **Schutzart** Klimaklasse

II gemäß EN 60335-1 IP 65 gemäß EN 60529 C gemäß **DIN EN 60654**

Spannungsversorgung 14...36 V DC

EMV gemäß EN 61326 / A1 Ausgänge

2 Open-Collector 250 mA bei 14...36 VDC, Schaltausgänge High/Low Side

schaltend und als Push/Pull Ausgänge konfigurierbar (SP und RP) per

Software wählbar

Schaltdifferenz Reaktionszeit Relaisausgänge

250 VAC, 5 A, 250 VAC, 0,8 A (200 Zulässige ohmsche Last Zulässige induktive Last

VA)

30 ms

Kontaktart 1 Wechselkontakt (1 x UM)

Lebensdauer mind. 250000 Schaltzyklen

Warnausgang Ausgangskonfiguration

Warnausgang auf Stecker 2 max. 20 mA, 14...36 VDC

Transmitterausgang

Gehäuse und Deckel

0-10 V oder 4-20 mA, Spannung/Strom konfigurierbar im

Expertenmodus (auch invertierbar) Polybutylenterephthalat PBT-GF30, chemikalien-

und spannungsrissbeständig Displayglas Polykarbonat PC Gewicht ca. 380 g

Funktionsumfang

Konfiguration der 2 Schaltausgänge als:

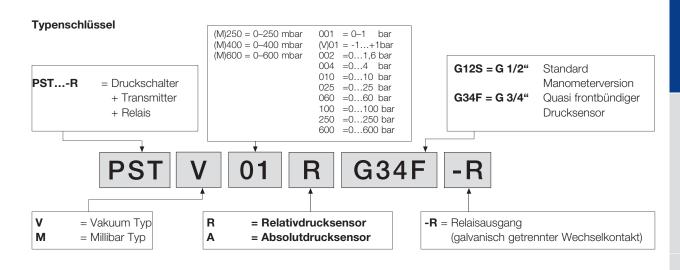
- · Minimaldruckwächter, Maximaldruckwächter, Druckfensterüberwachung
- · Öffner oder Schließer High oder Low-Side schaltend und als Push/Pull-Ausgang konfigurierbar
- · Zuordnung des Relaisausganges zu Kanal 1, 2 oder zum Warnausgang

Konfiguration des Analogausgangs:

- · 0-10 V, 4-20 mA bzw. 10-0 V und 20-4 mA
- · Analogmessbereich einschränkbar bis min. 50 % des Gesamtmessbereiches
- · Auswahl der Druckeinheit bar, Pa oder psi

Anzeigefunktionen von Smart Press:

- · 4-stellige Digitalanzeige mit Bargraph für Drucktrend, Einstellungen und gesetzte Parameter
- · 2 dreifarbige LED's für den Schaltzustand der Ausgänge, Unplausibilität der Einstellungen und als WARN-Zustandsanzeige


Elektrischer Anschluss:

- · 2 Stück 5-polige M12 Steckeranschlüsse für Spannungsversorgung, Schaltausgänge und Analogausgang
- · 1 Stück 3-poliger M12 Steckeranschluss für den Relaisausgang

Und außerdem:

- Druckspitzenfilter
- · Drucksimulations- und Schaltsimulationsmodus
- · Restore-Funktion
- · Warn-Funktion bei Unplausibilität der Schaltpunkte, Fühlerdefekt, Überlastung und Überhitzung des Gerätes
- · Manueller Nullpunktabgleich

Туре	Druck in bar	Max. zul.	Maß- zeich-
		Druck	nung
		(bar)	s. Seite 81
PSTV01RG12S-R	-1+1	6	
PSTM250RG12S-R	0 – 250 mbar	1	
PSTM400RG12S-R	0 – 400 mbar	2	
PSTM600RG12S-R	0 – 600 mbar	2	
PST001RG12S-R	0 – 1 bar	6	
PST002RG12S-R	0 – 1.6	6	
PST004RG12S-R	0 – 1,0	12	
PST010RG12S-R	0 – 10	30	
PST025RG12S-R	0 – 25	75	30 +
PST060RG12S-R	0 – 60	180	31
PST100RG12S-R	0 – 100	300	· .
PST250RG12S-R	0 – 250	500	
PST600RG12S-R	0 – 600	1000	32
PSTV01RG34F-R	-1+1	6	
PSTM250RG34F-R	0 – 250 mbar	1	
PSTM400RG34F-R	0 – 200 mbar	2	
PSTM600RG34F-R	0 – 600 mbar	2	
PST001RG34F-R	0 – 1 bar	6	
PST002RG34F-R	0 – 1.6	6	
PST004RG34F-R	0 – 4	12	33
PST010RG34F-R	0 – 10	30	
PST025RG34F-R	0 – 25	75	
PST002AG12S-R	0 – 2	6	30 +
PST010AG12S-R	0 – 10	30	31
			-
PST002AG34F-R	0 – 2	6	
PST010AG34F-R	0 – 10	30	33

Steckerbedarf (gesondert zu bestellen) s. Seite 78

((

 - als Transmitter
 1 x ST12-5-A

 - als Schalter (OC)
 1 x ST12-5-A

 - als Transmitter + Schalter (OC)
 2 x ST12-5-A

- als Transmitter + Relais
 - als Schalter (OC) + Relais
 - als Transmitter + Schalter (OC) + Relais
 - 2 x ST12-5-A + 1 x ST12-4 A
 - 2 x ST12-5-A + 1 x ST12-4 A

Kabeldose

Type

Kabeldosen sind für Anschlussquerschnitt max. 0,75 mm² einsatzfähig.

Für Ausgang 1+2

ST12-5-A 5-polig A-codiert abgewinkelte Ausführung

Für Ausgänge 3 (Relaisausgang)

ST12-4-A	4-polig	B-codiert	abgewinkelte Ausführung
ST12-4-AK	4-polig	B-Codiert	abgewinkelte Ausführung mit 2m-Kabel
ST12-4-GK	4-polig	B-Codiert	gerade Ausführung mit 2m-Kabel

Abdeckkappe

STA12 IP 65

Elektrischer Anschluss

Elektrischer Anschluss und Kontaktbelegung

Der elektrische Anschluss erfolgt über M 12-Stecker auf der Rückseite des Gerätes. Es stehen 3 Anschlussstecker M 12 zur Verfügung (nicht im Lieferumfang enthalten).

Kontaktbelegung an Stecker 1 (A-codiert)

Pin 1: Spannungsversorgung 14...36 VDC

Pin 2: OUT 2 (Ausgang 2) Open-Collector-Ausgang

Pin 3: 0 Volt (Masse)

Pin 4: OUT 1 (Ausgang 1) Open-Collector-Ausgang Pin 5: serielle Schnittstelle (verriegelt für Kalibration)

Besonderheit bei Open-Collector-Ausgängen:

Konstruktiv bedingt kann die Ausgangsspannung an den Open-Collector-Ausgängen bis zu 2,5 V niedriger sein als die angelegte Versorgungsspannung.

Beispiel: Versorgungsspannung 14 V...Ausgangsspannung OUT 1 ca. 11,5 V.

Kontaktbelegung an Stecker 2 (A-codiert)

Alle Versionen sind zusätzlich mit einem A-codierten M 12-

Stecker ausgestattet.

Pin 1: Spannungsversorgung 14...36 VDC

Pin 2: WARN (Warnausgang max. 20 mA)

Pin 3: 0 V (Masse)

Pin 4: Analogausgang AOUT

Pin 5: serielle Schnittstelle (nur für werksseitige Kalibration)

Geräte der Serie PST-R können sowohl über Stecker 1 als auch über Stecker 2 mit Spannung versorgt werden. Im Falle der Verwendung des PST-R als reiner Transmitter ist nur ein Anschluss über Stecker 2 erforderlich, da (siehe "Kontaktbelegung an Stecker 1") auch hier Versorgungsspannung angeschlossen werden kann.

Kontaktbelegung Stecker 3 (B-codiert)

Alle Versionen sind mit einem B-codierten M 12 Stecker ausgestattet.

Pin 1: Gemeinsamer Kontakt

Pin 2: Öffner
Pin 3: Schließer

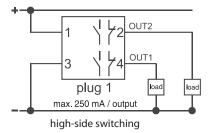
Anschlussbelegung

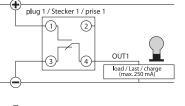
ST12-4-AK und ST12-4-GK

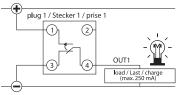
zum Gerätekontakt	Farbe	Kontaktart
1	braun	Gemeinsam
2	weiß	Öffner
3	blau	Schließer
4	grün/gelb	im Gerät nicht belegt

Achtung – für IP65 besondere Abdeckkappe STA12 erforderlich

Die Einhaltung des Wasser- und Staubschutzes IP65 erfordert das sichere Abdichten der nicht durch Stecker verschlossenen elektrischen Anschlüsse.


Die für den Versand aufgesteckten Staubschutzkappen aus Weichgummi erfüllen diese Aufgabe nicht. Eine zuverlässige Abdichtung wird nur durch die Abdeckkappe **STA12** erzielt.





Schaltausgänge

plug 1 max. 250 mA / output load 1 1 2 OUT2 3 1 4 OUT1 low-side switching

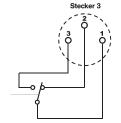
High Side schaltend PUSH/PULL-Ausgänge

Schaltausgang OUT1 und OUT2:

Die Schaltausgänge können softwareseitig (in der Expertenebene) sowohl als Öffner/Schließer als auch "High Side"- und "Low Side"-schaltend konfiguriert werden.

- · In der **Konfiguration "Öffner"** (normally closed) liegt das gewählte Spannungspotenzial (Masse oder Versorgungsspannung) im **ungeschalteten** Zustand an den Ausgängen.
- · In der Konfiguration "Schließer" (normally open) liegt das gewählte Spannungspotenzial (Masse oder Versorgungsspannung) im geschalteten Zustand an den Ausgängen.
- · In der **Konfiguration "Low Side schaltend"** schalten die Ausgänge das Spannungspotenzial OV (Masse) gegen einen am OUT1 oder OUT2 angeschlossenen Verbraucher.
- In der Konfiguration "High Side schaltend" schalten die Ausgänge das Spannungspotenzial Versorgungsspannung (minus ca. 2 V) gegen einen am OUT1 oder OUT2 angeschlossenen Verbraucher.

Falls die Spannungsversorgungen von Druckschalter und angeschlossener Last unabhängig voneinander ausgeführt sind, ist in jedem Falle zu beachten: Die Potenzialdifferenz zwischen OC-Ausgang und Ground bzw. OC-Ausgang und Versorgungsspannung darf maximal 36 VDC betragen. Ist das Gerät "Low Side schaltend" konfiguriert, muss die externe Versorgungsspannung denselben Massebezug haben, wie das Gerät selbst. Ist das Gerät "High Side schaltend" definiert, muss die externe Spannungsversorgung mit der positiven Versorgungsspannung des Geräts verbunden sein. Dabei ist darauf zu achten, dass der Spannungsabfall im durchgeschalteten Zustand bis zu 2 V betragen kann. Der maximal zulässige Strom am OC beträgt 250 mA pro Schaltausgang (OUT1, OUT2). Dabei darf über jeden Kanal ein maximaler Schaltstrom von 250 mA fließen.


Die Schaltkanäle sind kurzschlussfest, strom- und temperaturüberwacht. Beim Einsetzen der Strombegrenzung und bei Überhitzung warnt das Gerät durch Aufleuchten der beiden LED's in Rot (WARN-Funktion).

Die frei konfigurierbaren Ausgänge können sowohl Versorgungsspannung (+ Potenzial) selbst als auch das Ground (– Potential) der Versorgungsspannung auf den Ausgang schalten. Liegt am Ausgang Pluspotenzial an, stellt sich nach dem Umschalten Ground-Minuspotenzial ein.

Liegt am Ausgang Ground-Minuspotenzial an, stellt sich nach dem Umschalten Pluspotenzial ein.

Vorteil: Der Ausgang verhält sich wie ein mechanischer Wechselkontakt, der entweder Plusoder Minus-Potenzial ausgibt. D. h. der Ausgang ist elektrisch nie undefiniert offen, so wie das bei "Open Collector" der Fall ist. Damit können Pull-Up-Widerstände entfallen.

plug 2 max. 250 mA / output 1 2 WARN AOUT 4 20 mA / A 20...4 mA 0...10 V / 10...0 V max. 500 ohm load

Analogausgang und Relaisausgang

Analogausgang AOUT:

Der Analogausgang (AOUT) ist in der Version PST...-R verfügbar. Im Expertenmodus ist er konfigurierbar sowohl als 0–10 V/10–0 V als auch als 4–20 mA/20–4 mA-Ausgang. Im Auslieferungszustand ist er als 0–10 V-Ausgang eingestellt. Der Eingangswiderstand des angeschlossenen Verbrauchers darf **maximal 500 Ohm** betragen.

Relaisausgang REL:

Der Relaisausgang ist in der Version PST...-R verfügbar. Im Expertenmodus kann der Analogausgang softwareseitig sowohl mit Ausgang 1 (OUT1) und Ausgang 2 (OUT2) als auch mit der WARN-Funktion gekoppelt werden. Der Anwender hat somit einen frei wählbaren potenzialfreien Ausgang für diese 3 wichtigen Funktionen zur Verfügung. Der Wechselschaltkontakt des Relais ist für eine maximale ohmsche Last von 4 A und eine induktiven Last von 200 VA ausgelegt. Im unteren Bereich sind die mit 5 μ vergoldeten Silberkontakte ausgelegt für eine Minimalbelastung von 50 mW (5 V bei 10 mA).

In jedem Fall ist zu beachten, dass nach einer einmaligen Maximalbelastung keine Verwendung in Minimalbelastung mehr möglich ist.

Anzeigen und Display

Die Anzeigen im Display haben folgende Bedeutung:

ATT Filterfunktion (Einstellung eines Filters)

1 111013

EXPERT

Expertenmodus (ermöglicht dem Anwender, das Gerät zu konfigurieren, z. B. als Maximalwächter, Minimalwächter und Fensterüberwachung)

abo.mao.ang/

WARN Warnfunktion/Alarm

WIN Fensterüberwachung (zur Überwachung eines Druckfensters auf Über- oder Unterschreiten eines

eingestellten Druckfensters)

OUT1 Schaltausgang OC 1

OUT2 Schaltausgang OC 2

SP Schaltpunkt

RP Rückschaltpunkt Schaltkontakt als Schließer konfiguriert

Schaltkontakt als Öffner konfiguriert

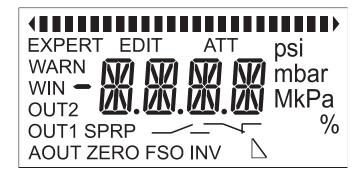
Komiguneri

AOUT Analogausgang (falls der aktuelle Druck sich außerhalb des eingestellten Bereiches befindet, wird das "AOUT-Symbol" aus-

geblendet).

ZERO Nullpunktanzeige beim Analogausgang bzw. Anzeigesymbol, wenn Ausgang 1 oder Ausgang 2 als "Low Side Schalter" definiert sind. (Gerät schaltet Spannungsversorgung Plus auf den Ausgang) Zusammen mit "FSO" im Schalterkonfigurationsmenü

als Anzeige für die Push/Pull-Funktion.


FS0

Obergrenze des eingestellten Analoganzeigebereiches bzw. Anzeigesymbol, wenn Ausgang 1 oder 2 als "High Side Schalter" definiert sind. (Gerät schaltet Spannungsversorgung Minus auf den Ausgang) Zusammen mit "ZERO" im Schalterkonfigurationsmenü als Anzeige für die Push/

Pull-Funktion.

INV Invertierung des Analogsignals (d. h. "INV" wird angezeigt, wenn anstelle eines Standardanalogsignals 0...10 V oder 4...20 mA der Analogsignalaus-

gang auf 10...0 V oder 20...4 mA eingestellt wird).

Displayanzeige

Die Anzeige besteht aus einer 4-stelligen Digitalanzeige mit 3 Dezimalpunkten und einem Minus-Vorzeichen. Zusätzlich werden weitere Symbole für die verschiedenen Einstellungen und Konfigurationen angezeigt.

Des Weiteren verfügt die Anzeige über einen **Bargraph**. Dieser befindet sich am oberen Ende der Anzeige und besteht aus einer Reihe von separat ansteuerbaren Einzelsegmenten, vorne und hinten mit einem Pfeilsymbol versehen.

Sobald das Gerät mit Versorgungsspannung verbunden wird, erscheinen als Test 1 Sekunde lang alle Symbole am Bildschirm, und die beiden Leuchtdioden leuchten kurz auf. Danach schaltet das Gerät in den Anzeigemodus, in dem der jeweilig anliegende Anlagendruck und die gewählte Einheit (bar, Psi oder Pa) angezeigt werden. Weiterhin wird der Drucktrend (ob gerade fallend oder steigend) durch einen Pfeil am linken (fallend) oder rechten Ende (steigend) angezeigt. Die "AOUT"-Anzeige sagt dem Anwender, dass sich der Druck im Moment im vor-definierten Druckbereich für das Analogsignal befindet.

Bedeutung der LED-Farben

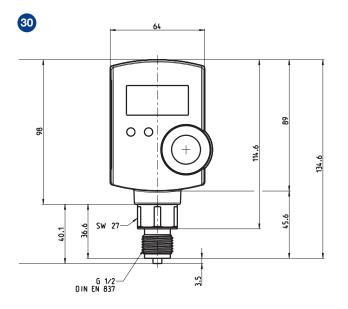
	LED-Status			Bedeutung	
LED 1 leuchtet		LED 2 leuchtet	Ausgang 1 Status		Ausgang 2 Status
grün		grün	nicht aktiv		nicht aktiv
grün		orange	nicht aktiv		aktiv
orange		grün	aktiv		nicht aktiv
orange		orange	aktiv		aktiv
rot		rot	bei U	Inplausibilität SP/F	RP
rot		rot		Fehler	

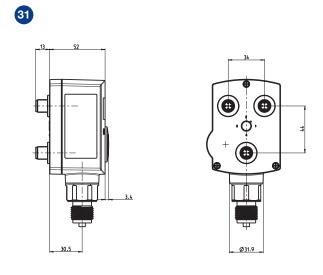
Statusanzeige LEDs

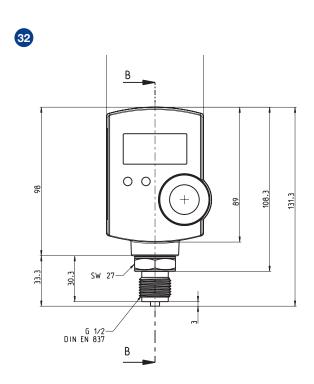
Der aktuelle Status der Schaltausgänge wird durch 2 LEDs angezeigt, die unterhalb der Anzeige platziert sind (LED 1 und LED 2).

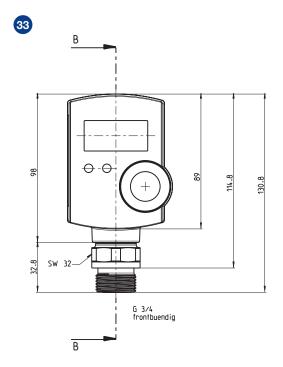
Die beiden 3-farbigen Leuchtdioden zeigen, wie folgt, den Schaltstatus des entsprechenden Ausganges bzw. die Warnfunktion.

- · orange: der Ausgang ist AKTIV
- · grün: der Ausgang ist NICHT AKTIV (falls als WARN-Ausgang definiert, ebenfalls NICHT aktiv)
- · Während der Eingabe der Schaltpunkte ist nur die LED des gerade modifizierten Schaltkanals aktiv. Falls während der Eingabe der Schaltpunkte versehentlich eine unplausible Eingabe, z.B. SP < RP, beim Maximalwächter gemacht wird, leuchtet die jeweilige Kanal-LED rot.
- · Beide Status-LEDs leuchten rot, sobald ein WARN-Zustand eintritt (z.B. Elektronikdefekt und Überhitzung des Gerätes).


Warnung mit beiden LEDs ROT und WARN-Ausgang aktiv


	Displayanzeige
- bei Sensorausfall	-***1
- Unterspannung	-**1*
- Untertemperatur	-*1**
- Übertemperatur	-*2**


	Displayanzeige
- Überlastung Ausgang 1	-1***
- Überlastung Ausgang 2	-2***
- Überlastung Ausgang 1 u. 2	-3***



Maßzeichnungen (Angaben in mm)

Ausschreibungstexte

Druckschalter

Typerreibe PSH PSH PSH PSH Editorischer Druckschafter für Plüssgleiten und G- 46 bar. Schafter Plös, mit Historischer in Bewichen von -1 + 1 bar und G- 46 bar. Schafter Plös, mit Historischer Differenzehruschaften im Fleispekten und G- 46 bar. PSH PSH Editorischer Drüteranzehruschaften im Fleispekten und G- 46 bar. PSH Editorischer Drüteranzehruschaften im Fleispekten und G- 46 bar. PSH Editorischer Drüteranzehruschaften im Fleispekten und geleispekten im St. Deutschaften für Beleispekten und eine Pleispekten und eine Pleispekten von -1 + 1 bar und G- 46 bar. PSH PSH Editorischer Drüteranzehruschaften für Rüssige und gestiemige Medien mit Jepen Gelleten Schaftespekten ein Belastungsgeng und gestiemige Nederlinnige Proportional freien Fleisbesungsgeng der Voll wirder der Schaftespekten von Poppen Zeiter Proportional der Schaftespekten von Poppen Zeiter Proportional der Vertreibungsgenen der Planten in der Vertreibungsgenen der Planten in der Vertreibungsgenen der Vertreibun					
Section of Belatidiction in Braindern vom 3 (1 + 1 bar und 0 40 bar.) Belderonischer Ditteraceziuckschafter für Füssigskeiten und Gase zu beführendern belterenzeitwicken und Felsender für Füssigskeiten und Gase zu beführendern der Seinen (Schrichtersberoblissen (Schrichtersberoblissen vom 0 250 mbar bis 0 25 bar, Schutzurt (PS6, mit Hull 2 20 bar.) Collector Schrichter (Ditteraction vom 0 250 mbar bis 0 25 bar, Schutzurt (PS6, schrizher) (PS6, Schrizhersberoblissen and Ditteraction vom 0 250 mbar bis 0 25 bar, Schutzurt (PS6, Schrizhersberoblissen and Ditteraction vom 0 250 mbar bis 0 25 bar, Schutzurt (PS6, Schrizhersberoblissen and Ditteraction vom 0 250 mbar bis 0 25 bar, Schutzurt (PS6, Schrizhersberoblissen vom 0 25 bar, Schrizhersberobliss	•	Typenreihe	Druckschalter	Typenreihe	Druckschalter
Schutzart IP65, mit HMI PSMO Bedronscher DirectorativeSchafter für Flüssigkeiten und Gase zur Messung von Differenzörlücken und Reibtwichlichen in 7 Druckstufen von 250 mar bei Dr. 25 bar, Schaftgefläuse aus Au-Druckguss GD Als 12, Steckeranschluss en ach Dile NT7501, Schutzurt IP66, mit HMI PSTR PSTR Elektranscher Druckschafter für Büsige und gasförmige Medien mit Pie Schaftgefläuse aus Au-Druckgussignung und proteinsilferen Reibssausgang, Spernungswesorgung 14 S8D DC, Schutzurt Pie Schaftgefläuse aus Au-Druckgussignung der Programmerbarer Arabigausgang 4-20 mA oder 0-10 V läuch inverlierbay, Programmerbarer Arabigausgang 4-20 mA oder 0-10 V läuch inverlierbay, Programmerbarer Arabigausgang 4-20 mA oder 0-10 V läuch inverlierbay, Programmerbarer Arabigausgang 4-20 mA oder 0-10 V läuch inverlierbay, Programmerbarer Arabigausgang 4-20 mA oder 0-10 V läuch inverlierbay, Programmerbarer arabigausgang 4-20 mA oder 0-10 V läuch inverlierbay druckschafter in Steckersnachluss nach DIN EN175301, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, Schaftgefläuse aus Au-Druckguss GD Als 12, Schutzart IP 54. Einstellbereich vor. Job. Laufbar, der der Mitter vor. Job. Laufb		PSH	Elektronischer Druckschalter für Flüssigkeiten und Gase zur Messung	SDBAM	Druckbegrenzer besonderer Bauart für Maximaldrucküberwachung
Elektronischer Dirikerrachruckschafter für Flüssigkeiten und Gase zur von Dieseung von Differenzeründen und Beithrünkschen in 7 Durckstuffen von 0 - 250 mahr bis 0 - 25 bar, Schutzart IP6, mit HM 2 Open-Collector-Schaftausgängen, Analogausgang und potendischen für Beitsausgang – 20m And oder O-10 V (such inventibut) per den Flössausgang gehalten mit 2 Open-Collector-Schaftausgängen, Analogausgang und potendischen meistenstenspang – 20m And oder O-10 V (such inventibut) processarschluss and Schutzart IP6, S. Schaftpunkter fei einstellber von bis bar Frei programmen beitsausgang – 42m And oder O-10 V (such inventibut) processarschluss and Schutzart IP6, S. Schaftpunkter fei einstellber von bis bar Frei programmen versielber von Schaftpunkter fei einstellber von bis bar Frei programmen versielber versielber von bis bar Frei programmen versielber versielber versielber von bis bar Frei programmen versielber versie			von Relativdrücken in Bereichen von -1 + 1 bar und 0 - 40 bar.		mit interner Verriegelung des Abschaltzustands (Wiedereinschalt-
Messung von Differenzorücken und Relativorücken in 7 Druckstuffen PSTR Elektronscher Druckschafter für füssige und gastferinge Meden mit PG (2) — Collector Schafter güngen, andaguassigen und potential- freiem Relatisausgang, Spannungswenorgung 14369 DC, Schutzurt PG (5) — Chaltigunkte fei einstelliar von bs bs. r- Frei program- mierbarner Analogussgang 4-90 mA oder 0-10 V gluch invertierbung, Prozessanschluss G 34" oder G 1-12", Absolutdruck- oder Relativ- drucksusführung PSP PSTR DCM DCM DCM DCM DCM DCM DCM DOWN			Schutzart IP65, mit HMI		sperre) mit selbstüberwachendem Sensor, (Sicherheitssensor) bau-
PSTR For the content of the con		PSHD	Elektronischer Differenzdruckschalter für Flüssigkeiten und Gase zur		teilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus
Elektronischer Druckschafter für flüssige und gasförmige Medicien mit Zuper-Collector-Schaftausgängen, Annibogausgang und potenzial-freiem Relaiausgang, Spannungsversorgung 14.,38V DC, Schlutzat PG, Schaftgurter fei einstelliter vor bis bar. Frie programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Prozesanschluss G 34" oder G 1/2", Absolution-be-oder Pelativ-drucksusführung programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Prozesanschluss G 34" oder G 1/2", Absolution-be-oder Pelativ-drucksusführung programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10 V (auch invertierbar), Programmierbarer Analogausgang 4-20 mA oder O-10			Messung von Differenzdrücken und Relativdrücken in 7 Druckstufen		Alu-Druckguss GD Al Si 12, Steckeranschluss nach DIN EN175301,
Type: SDBAM			von 0 - 250 mbar bis 0 - 25 bar, Schutzart IP65, mit HMI		Schutzart IP 54, Einstellbereich vonbisbar/bar, Druckanschluss
Freiem Relaisausgang, Spannungsversorgung für, "38V DC, Schutzart PS, Schaltgunder ein einstellar zu. "bis. "bar Frei programmierberer Analogausgang 4-20 mA oder 0-10 V (auch invertierbeit), Prozesanschluss G 34" oder G 1/2", Absolutdruck- oder Pelativ-druckausführung — Type: FST R DCM DCM DCM DCM DCM DCM DOM DOM DOM DNM/ DNM.		PSTR	Elektronischer Druckschalter für flüssige und gasförmige Medien mit		G 1/2, außen, und G 1/4, innen
P 6.5, Schaltpunkte frei einstelliber von bis bar frei programmerbarer Analogusgangan 4-20 nA oder 0-10 V (auch invertierbar). Prozessanschluss G 3/4" oder G 1/2", Absolutdruck- oder Relativ-druckausführung Type: PSTR DCM			2 Open-Collector-Schaltausgängen, Analogausgang und potenzial-		Type: SDBAM
mierbarr Analogausgang 4-20 mA oder O-10 V (auch invertierban), Prozesanschluss of 3/4" oder G 1/2", Absolutinuck-oder Relativ- druckausführung Type: PSTR DOM			freiem Relaisausgang, Spannungsversorgung 1436V DC, Schutzart	DWR/	Druckwächter besonder Bauart für Maximaldruck- und Minimal-
Prozessarschluss G 3/4" oder G 1/2", Absolutdruck- oder Relativ- druckausübrung Type: PSTR DOM			IP 65, Schaltpunkte frei einstellbar von bis bar. Frei program-	DWR203	drucküberwachung, bauteilgeprüft nach VdTÜV-Merkblatt DRUCK
Ord of conclusion from the control of the contr			mierbarer Analogausgang 4-20 mA oder 0-10 V (auch invertierbar),		100 sowie nach DIN EN1854 und DIN EN764-7, Schaltgehäuse aus
DCM			Prozessanschluss G 3/4" oder G 1/2", Absolutdruck- oder Relativ-		Alu-Druckguss GD Al Si 12, Steckeranschluss nach DIN EN175301,
DOM Drukschafter mit Steckeranschluss nach DIN EN175301. Sersorgehäuse aus Edelstahl 1.4104, Schaltgehäuse aus Alu-Druckguss GD AI S1 12, Schutzart IP 54, Enstellbereich vorbisbar/mbar, Schaltdifferenz einstellbar/nicht instellbar Druckguss GD AI S1 12, Schutzart IP 54, Enstellbereich vorbisbar/bar, Drukschafter mit Steckeranschluss nach DIN EN175301. DNS/ VNS DNS/ VNS DNS/ VNS DNS/			druckausführung		
Schaltgehäuse aus Alu-Druckguss GD AIS 12, Schutzart IP 54, Einstellbardnorn einstellbar, Druckanschluss G1/2, außen, und G 1/4, innen Type: DCM DNM/					
Einstellbereich vonbisbar/mbar, Schaldrifferenz einstellbar/nicht einstellbar zu beinstellbar zu beinste		DCM			
einstellbar, Druckanschluss G1/2, außen, und G 1/4, innen Type: DCM DNM/ NM/ NM/ NM/ Druckschafter mit Steckeranschluss nach DIN EN175301. VNM Sensorgehäuse aus Edelstahl 1.4104, Schaltgehäuse aus Alu- Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbis bar/bar, Schaltdifferenz einstellbar, Pruckanschluss außen, und G 1/4, innen Type: DNM DNS/ NS DNS/ NS DNS/ DNS					**
Type: DCM No					
DNM/VMM Druckschafter mit Steckeranschluss nach DIN EN175301. Merkblatt DRUCK 100 sowie nach DIN EN1854 und DIN EN764-7, Exhattoring in Sensorgehäuse aus Edelstahl 1.4104, Schaltgehäuse aus Alu-Druckguss GD AI SI 12, Schutzart IP 54, Einstellbereich vonbis bar/bar, Schaltdifferenz einstellbar /nicht einstellbar, Druckanschluss G 1/2, außen und G 1/4, innen Type: DNM Doutschafter m. Steckeranschlus n. DIN EN175301, Sensor Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS y Druckschafter m. Steckeranschluss aus Alu-Druckguss GD AI SI 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/incht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, NNS DGM Gasdruckwächter mit Steckeranschluss nach DIN EN175301, Sensor komplet aus Edelstahl 1.4104, Schaltgehäuse aus Alu-Druckguss GD AI SI 12, außen, und G 1/4, innen Type: DNS, NNS DGM 1.51, 25, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/incht einstellbar prückguss GD AI SI 12, Schutzart IP 65, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/incht einstellbar prückguss GD AI SI 12, Schutzart IP 65, Einstellbereich vonbisbar/bar Type: DNS, NNS DWAM57 DWAM57 DWAM57 DWAM57 DDCM 252 Differenz/druckschalter mit Steckeranschluss anch DIN EN175301, Land außertenz einstellbar/incht einstellbar vonbisbar/bar Type: DNS, NNS DWAM57 DVAM57 DVAM57<				DWR206	
Sensorgehäuse aus Edelstahl 1.4104, Schaltgehäuse aus Alu Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar, / Inchesianschluss G 1/2, außen und G 1/4, innen Type: DNM NS/ VNS NS/ VNS DNS/3 (Schutzart IP 54, Einstellbereich vonbisbar/bar, Druckanschluss n.DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar, Druckachalter mit Steckeranschluss nach DIN EN175301, DVGWV-geprüft nach DIN EN1854, Sensorgehäuse aus Cul/Zn/ Edelstahl 1.4571, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DNS351					
Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbis Bar/bar, Schaltdifferenz einstellbar /nicht einstellbar, Druckanschluss G 1/2, außen und G 1/4, innen Type: DNM DNS/ VNS DNS/ Schaltdifferenz einstellbar /nicht einstellbar, Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DNS, VNS DNS351/ VNS351/ VNS351/ VNS351/ DDCM 252 DDCM 252 DDCM 252 DDCM 252 DDCM 252 DDCM 252 DDCM 15 12, Schutzart IP 54, Einstellbereich vonbisbar/bar (Sachuzart IP 65, Einstellbereich vonbisbar/bar Type: DNS, VNS DDCM 16 10 DCM 16 10					
bar/bar, Schaltdifferenz einstellbar /nicht einstellbar, Druckanschluss G 1/2, außen und G 1/4, innen Type: DNM DNS4 VNS Druckschalter m. Steckeranschluss n. DIN EN175301. Sensor VNS Schaltdifferenz einstellbar/nicht einstellbar /nicht einstellbar/nicht einstellbar /nicht einstell		VNM			
Type: DNM DGM DGM Gasdruckwächter mit Steckeranschluss nach DIN EN175301. Sensor DGM Gasdruckwächter mit Steckeranschluss nach DIN EN175301. Sensor VNS Celeistah 1.4.571, Schaltgehäuse aus Alu-Druckguss GD AI S1 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351/ VNS Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351/ PSpe: DNS, VNS Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351/ PSpe: DNS, VNS Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351/ PSpe: DNS, VNS Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351/ PSpe: DNS, VNS Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351/ PSpe: DNS, VNS Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DWAM576 Druckwächter besonderer Bauart für Maximaldrucküberwachung mit selbstüberwachung bauteligeprüt nach VaTUV-Merkblatt DRUCK 100. Schaltgehäuse aus Alu-Druckgus GD AI SI 12, Schutzart IP 64, Einstellbereich vonbisbar/bar Type: DDCM Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DDCM Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Druckanschlusse G 1/2, außen, und G 1/4, innen Type: DDCM Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Druckanschlusse G 1/2, außen, und G 1/4, innen Type: DDCM Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Druckanschlusse G 1/2, außen, und G 1/4, innen Type: DDCM Druckanschlusse G 1/2, außen, und G 1/4, innen Type: DDCM Druckanschlusse G 1/2, außen, und G 1/4, innen Type: DDCM Druckanschlusse G 1/2, außen, und G 1/4, innen Type: DDCM Druckanschlusse G 1/2, außen					
Type: DNM DNS/ DNS/ DNS/ DNS/ DNS/ DNS/ DNS/ DNS/ DNS/ NS Edelstahl 1.4571, Schaltgehäuse aus Alu-Druckguss GD Als 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/incht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DNS351/ VNS351 DNS351/					
DNS/VNS Druckschalter m. Steckeranschluss n. DIN EN175301. Sensor Komplett aus Edelstahl 1.4571, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DVGW-geprüft nach DIN EN175301, Sensorgehäuse aus Alu-Druckguss GD Al Si 12, Setekeranschluss nach DIN EN175301, Schaltzerf IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DWAM/Steckeranschluss and DIN EN175301, Sensor komplett aus Edelstahl VNS351 DWAM/Steckeranschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DWAM/Steckeranschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DWAM/Steckeranschluss aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Druckanschluss G 1/2, außen, und G 1/4, innen Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM DWAM/Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar Druckanschluss G 1/2, außen, und G 1/4, innen Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM FD16 – 326 Druckwächter besonderer Bauart für die Maximaldrucküberwachung bei Flüssiggasanlagen mit selbstüberwachendem Sensor (Sicherheitssensor), Widerstandskombination für Leitungsbruch- und Kurzschluss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM FD16 – 326 Druckwächter besonderer Bauart für die Maximaldrucküberwachung bei Flüssiggasanlagen mit selbstüberwachendem Sensor (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereins				DCM	21
komplett aus Edelstahl 1.4571, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltderner einstellbar/richt einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DNS3517 VNS351 DNS3517 VNS351 DNS3517 VNS351 DDCM 252 DIfferenzdruckschalter mit Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM DDCM 252 DIfferenzdruckschalter mit Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM DDCM 15 DDCM 15 DDCM 16 DDCM 16 DDCM 17 DDCM 17 DDCM 18 DDCM 18 DDCM 19		DNS /	··	DGIVI	
GD Å IS 12, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/hicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS351/ DNS351/ DNS351/ VNS351/ DPUCKSchalter mit Klemmenanschluss. Sensor komplett aus Edelstahl MNS351 Druckschalter mit Klemmenanschluss G 1/2, außen, und G 1/4, innen Type: DNS4NS DPUCKanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DDCM 252 DDCM 252 DDCM 6002 DDCM 1 DDCM 6002 DDCM 1					
Schaltdifferenz einstellbar/nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DNS351/ VNS351/ VNS		V140	·		
außen, und G 1/4, innen Type: DNS, VNS DNS351/ VNS351/ VNS351 Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl VNS351 VNS351 L4571, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Gehäuse kunststoffbeschichtet, Schutzart IP 65, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ Druckschalter mit Steckeranschluss nach DIN EN175301, DDCM 252 DDCM 252 DDCM 252 DIfferenzdruckschalter mit Steckeranschluss nach DIN EN175301, DDCM 361 DDCM 4602 DDCM 461 DDCM 462 DDCM 462 DDCM 463 DDCM 464 DDCM 4654 DDCM 4655 DDCM 4655 DDCM 4655 DDCM 4656 DDCM			·		
DNS351/			·		,
DNS351/ VNS351 Druckschalter mit Klemmenanschluss. Sensor komplett aus Edelstahl 1.4571, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Gehäuse kunststoffbeschichtet, Schutzart IP 65, Einstellibereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DDCM 252 DDCM 6002 DDCM 6002 DDCM 6002 Al Si 12, Schutzart IP 54, Einstellibereich vonbisbar/bar Type DDCM DDCM 1600 DDCM 160					
NS351 1.4571, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Gehäuse kunststoffbeschichtet, Schutzart IP 65, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DDCM 252 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Sensor aus Aluminium, Messmembrane aus Perbunan, Druckanschluss G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 64, Einstellbereich vonbisbar/bar Type: DDCM DDCM 1 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301 DDCM 1 Differenzdruckschalter mit Steckeranschluss nach		DNS351/		DWAM576	**
Gehäuse kunststoffbeschichtet, Schutzart IP 65, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DDCM 252 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, DDCM 6002 Sensor aus Aluminium, Messmembrane aus Perbunan, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM DDCM 1 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301 DDCM 16 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM Discbar/bar Type: DDCMDiscbar/bar Type: DDCMTypenerile DWAMW DWAMW DWAMW DWAMW DWAMW DWAMW DWAMW Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen Type: DicMTypeprerile Druckwächter besonderer Bauart für Maximaldrucküberwachung mit selbstüberwachendem Sensor (Sicherheitssensor), bauteilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Sebutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckbegrenzer besonderer Bauart für die Maximaldrucküberwachung bei Flüssiggasanlagen mit selbstüberwachendem Sensor (Sicherheitssensor), Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschaltsgerre), Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschaltsgerre)			·		· · · · · · · · · · · · · · · · · · ·
vonbisbar/bar, Schaltdifferenz einstellbar/nicht einstellbar Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DDCM 252 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Sensor aus Aluminium, Messmembrane aus Perbunan, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 65, Einstellbereich vonbisbar/bar Type DDCM DDCM 1 DIfferenzdruckschalter mit Steckeranschluss nach DIN EN175301 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM DDCM 1 DIfferenzdruckschalter mit Steckeranschluss nach DIN EN175301 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 65, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe DWAM/ DWAMV FD16 –326 DWAMV FD16 –326 DWAMV FD16 –326 DWAMV FD16 –327 DWAMV FD16 –328 DWAMV FD16 –328 DWAMV FD16 –328 FD16 –327 DWAMV FD16 –328 FD16 –327 DWAMV FD16 –328 DRUCK 100, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 65, Einstellbereich vonbisbar/bar Type: DDCMfypenreihe DWAMV FD16 –326 DWAMV FD16 –327 DWAMV FD16 –328 DWAMV FD16 –329					, , , , , , , , , , , , , , , , , , ,
Druckanschluss G 1/2, außen, und G 1/4, innen Type: DNS, VNS DDCM 252 DDCM 6002 Sensor aus Aluminium, Messmembrane aus Perbunan, Druck- anschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type DDCM DDCM 16 DDCM 16 DDCM 16 DDCM 17 DDCM 16 DDCM 16 DDCM 18 DDCM 18 DDCM 18 DDCM 18 DDCM 18 DDCM 18 DDCM 19 DDCM 1					
DDCM 252 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Sensor aus Aluminium, Messmembrane aus Perbunan, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM 1 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM Typenreihe DWAMV DWAMV Differenzdruckschalter mit Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe DWAMV Druckwächter besonderer Bauart für die Maximaldrucküberwachung mit selbstüberwachendem Sensor (Sicherheitssensor), bauteilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Steutzart IP 65, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM FD16 -327 FD16			Druckanschluss G 1/2, außen, und G 1/4, innen		
DDCM 6002 Sensor aus Aluminium, Messmembrane aus Perbunan, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type DDCM DDCM 1 DDCM 1 DDCM 16 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCM Type: DDCM DDCM 16 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD AI Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe DWAMV			Type: DNS, VNS		Schutzart IP 65, Einstellbereich vonbisbar/bar, Druckanschluss
anschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type DDCM DDCM 1 DDCM 1 DDCM 1 DDCM 16 DDCM 1 DDCM 16 DDCM 1 DDCM 17 DDCM 17 DDCM 18 DDCM 18 DDCM 19		DDCM 252	Differenzdruckschalter mit Steckeranschluss nach DIN EN175301,		G 1/2, außen, und G 1/4, innen
bei Flüssiggasanlagen mit selbstüberwachendem Sensor (Sicher- heitssensor), Widerstandskombination für Leitungsbruch- und Kurz- schlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt DDCM 16. DDCM 16. DDCM 16. DDCM 16. DDCM 16. DDCM 16. DDCM 16. DDCM 17. DDCM 18. DDCM 18. DDCM 18. DDCM 19. DDCM 10. DDCM 19.		DDCM 6002	Sensor aus Aluminium, Messmembrane aus Perbunan, Druck-		Type: DWAM576
Type DDCM DDCM 1 DIfferenzdruckschalter mit Steckeranschluss nach DIN EN175301 DDCM 16 DDCM			anschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss	FD16 -326	Druckwächter besonderer Bauart für die Maximaldrucküberwachung
DDCM 1 Differenzdruckschalter mit Steckeranschluss nach DIN EN175301 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe DWAM/ DWAMV DW					bei Flüssiggasanlagen mit selbstüberwachendem Sensor (Sicher-
DDCM 16 Sensor aus Edelstahl 1.4104 und 1.4571, Druckanschlüsse G 1/4, innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe DWAM/ DWAMV DRUCK 100 und DIN EN764-7, Ex-i Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: FD16 –326 Druckbegrenzer besonderer Bauart für die Maximaldrucküberwachendem Sensor (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschaltsperre), Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen DRUCK 100 und DIN EN764-7, Ex-i Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen			31		,
innen, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 54, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe DWAM/ DWAMV DWAMV Type: DDCMTypenreihe Druckwächter besonderer Bauart für Maximaldrucküberwachung mit selbstüberwachendem Sensor, (Sicherheitssensor), bauteilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: FD16 –326 Druckwächter besonderer Bauart für die Maximaldrucküberwachendem Sensor (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschaltsperre), Widerstandskombination für Leitungsbruch- und Kurzschlussiberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen					0, 0,
DWAM/ DWAMV P 54, Einstellbereich vonbisbar/bar Type: DDCMTypenreihe		DDCM 16			
Type: DDCMTypenreihe Type: FD16 –326 DWAMV DWAMV DWAMV DWAMV DWAMV DWAMV Type: DDCMTypenreihe Druckwächter besonderer Bauart für Maximaldrucküberwachung mit selbstüberwachendem Sensor, (Sicherheitssensor), bauteilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DDCMType: FD16 –326 Druckbegrenzer besonderer Bauart für die Maximaldrucküberwachendem Sensor (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschlussensor), Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt DRUCK 100/1 und DIN EN764-7, Exi-Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen					
DWAMV DWAMV Druckwächter besonderer Bauart für Maximaldrucküberwachung mit selbstüberwachendem Sensor, (Sicherheitssensor), bauteilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM Druckwächter besonderer Bauart für die Maximaldrucküberwachendem Sensor (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschaltsperre), Widerstandskombination für Leitungsbruch- und Kurzschlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt DRUCK 100/1 und DIN EN764-7, Exi-Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen					
bwahv selbstüberwachendem Sensor, (Sicherheitssensor), bauteilgeprüft nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druck- guss GD Al Si 12, Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM selbstüberwachendem Sensor (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiederein- schaltsperre), Widerstandskombination für Leitungsbruch- und Kurz- schaltsperre), Widerstandskombination für Leitungsbruch- und Kurz- schlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen DRUCK 100/1 und DIN EN764-7, Exi-Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen		D14/48# /		ED40 00E	**
nach VdTÜV-Merkblatt DRUCK 100, Schaltgehäuse aus Alu-Druck- guss GD Al Si 12, Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM (Sicherheitssensor), Verriegelung des Abschaltzustands (Wiedereinschaltzustands (Wiedereinsch			9	FD 10 -321	•
guss GD Al Si 12, Steckeranschluss nach DIN EN175301, Schutzart IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM schaltsperre), Widerstandskombination für Leitungsbruch- und Kurz- schlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt DRUCK 100/1 und DIN EN764-7, Exi-Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen		DWAINIV			0 00 0
IP 54, Einstellbereich vonbisbar/bar, Schaltdifferenz einstellbar/ nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM Schlussüberwachung, TÜV-geprüft in Anlehnung an VdTÜV-Merkblatt DRUCK 100/1 und DIN EN764-7, Exi-Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen					, , , , , , , , , , , , , , , , , , , ,
nicht einstellbar, Druckanschluss G 1/2, außen, und G 1/4, innen Type: DWAM DRUCK 100/1 und DIN EN764-7, Exi-Ausstattung, Schaltgehäuse aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen			,		
Type: DWAM aus Alu-Druckguss GD Al Si 12, Schutzart IP 65, Einstellbereich von 3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen					0. 0,
3 bis 16 bar, Druckanschluss G 1/2, außen, und G 1/4, innen					
			1,900. 0177 491		, ,
1,561.2.002.					

Die Ausschreibungstexte beschreiben die listenmäßige Normalausführung der Druckschalter. Bei Ex-Ausführungen oder bei Geräten mit Zusatzfunktionen muss der Text entsprechend ergänzt oder geändert werden.

Druckschalter

Drucktransmitter

Thermostate

Flüssigkeiten und Gase

Smart SN

Drucktransmitter

Die robusten, mikroprozessorunterstützten elektronischen Druckaufnehmer der Baureihe Smart SN von Honeywell FEMA messen Relativdrücke in Bereichen von -1...+1 bar und 0–40 bar. Die Transmitter der Baureihe SN eignen sich für die Erfassung und Überwachung von Systemdrücken in den Bereichen Maschinenbau, Versorgungstechnik, Umwelttechnik, Heizungs- Lüftungs- Klimatechnik. Mit einem per Software in 90°-Schritten drehbaren grafischen Display kann der aktuelle Druck und das aktuelle Ausgangssignal vor Ort zuverlässig abgelesen werden. Ein großzügig dimensioniertes Tastenfeld ermöglicht eine bequeme Konfiguration bei der Transmitterausführung Smart SN. Der Einbau der Geräte erfolgt über ein G1/2" Außengewinde direkt in die Druckleitung.

→ S. 86 – 87

Smart SN DIFF

Differenzdrucktransmitter

Die mikroprozessorunterstützten elektronischen Differenzdruckaufnehmer der Baureihe Smart SN DIFF von Honeywell FEMA messen Differenzdrücke und Relativdrücke in 6 Druckstufen von 0–100 mbar bis 0–20 bar. Elektronische Differenzdrucktransmitter sind bestens geeignet für vielfältige Einsatzbereiche, u. a. zur genaueren Erfassung, Überwachung und Regelung von Differenzdrücken. Hierzu zählen in erster Linie Anwendungen der Pumpen- und Filterüberwachung.

→ S. 88 - 89

Smart SN DIFF

Flüssigkeiten und Gase

Flüssigkeiten und Gase

Honeywell Frank 1 2 Smart Press Smart Press PST-R

Smart Press PST-R

Elektronischer Druckschalter/Drucktransmitter

Die äußerst flexibel und in nur zwei Modi einstell- und konfigurierbaren Druckschalter der Honeywell FEMA-Serie PST...R findet ihren Einsatz in der Feinabstimmung und Überwachung von Systemdrücken im Anlagenbau, der Fluidik, der Verfahrenstechnik und in der Pneumatik, sowie in der Überwachung und Steuerung von Pumpen und Verdichtern. Alle Geräte sind mit einer WARN-Systematik ausgerüstet und mit einem standardisierten 20 mA-Warnausgang ausgestattet. Dadurch finden die Geräte auch in Fertigungseinrichtungen der Automobilindustrie, sowie im weiten Bereich des Werkzeug- und Sondermaschinenbaues ihren Einsatz. Mit einer Gesamtgenauigkeit von 0,5 % vom Endwert eignet sich der Druckschalter/Transmitter auch zur Überwachungsmessung für viele Anwendungen im Labor.

→ S. 76 - 81

Flüssigkeiten und Gase

PTI/PTU

PTI/PTU

Drucktransmitter

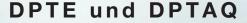
Die Drucktransmitter der Typenreihe PTI (2-Leiter) und PTU (3-Leiter) sind zur Erfassung des Relativdruckes in flüssigen und gasförmigen Medien geeignet. Die Messgröße Druck wird in ein analoges Stromsignal (PTI) oder Spannungssignal (PTU) umgewandelt. Bei dem Sensor handelt es sich um ein piezoresistiven Siliziumsensor, der in eine Edelstahlmesszelle eingebaut ist.

Mögliche Einsatzgebiete sind die Druckerfassung für Kompressoren, Kühlsysteme und der Bereich Heizung- und Klimatechnik

→ S. 90 - 91

Flüssigkeiten und Gase

DTI/DTU


Differenz-Drucktransmitter

Die Differenz-Drucktransmitter der Typenreihe DTI (2-Leiter) und DTU (3-Leiter) messen Differenzdrücke in sechs Druckstufen von 0-600 mbar bis 0-10 bar. Diese Differenz-Drucktransmitter sind zur Erfassung der Drücke von flüssigen und gasförmigen Medien geeignet. Die Messzelle ist dichtungsfrei in eine Edelstahl-Messkammer eingeschweißt. Mögliche Elnsatzgebiete sind die Druckerfassung für Kompressoren, Kühlsysteme und der Bereich Heizung- und Klimatechnik

→ S. 92 - 93

DTI/DTU

Luft und Klimatechnik

Differenzdrucktransmitter, piezoresistiv

Die bewährten Differenzdrucktransmitter der Serie DPTM wurden gründlich überarbeitet. Insbesondere die elektrischen Eigenschaften wurden hingehend den verschiedenen Sensorschnittstellen von Heizungsreglern optimiert. So können jetzt ausnahmslos und ohne Umsetzer alle Sensoreingänge der verschiedenen Honeywell Reglerfamilien mit einem 0–10V oder 4–20mA Signal angesteuert werden. Neu hinzugekommen sind:

- · DPTAQ(D) mit 8 Bereichen und automatischer Nullpunktkorrektur
- · DPTA25 (D) mit kleinstem Messbereich 0-25Pa und automatischer Nullpunktkorrektur

Differnzdrucktransmitter eignen sich für die Überwachung von gasförmigen, nicht aggressiven und nicht brennbaren Medien. Mögliche Einsatzgebiete sind:

- · Klima- und Lüftungstechnik
- · Umwelttechnik
- · Überwachung von Lüftungsklappen
- · Drucküberwachung in Reinräumen
- · Gebäudeautomation
- · Filter- und Gebläseüberwachung
- · Füllstandermittlung (Einperlverfahren)

Smart SN

Mikroprozessorunterstützter Druckmessumformer

Die robusten, mikroprozessorunterstützten Druckmessumformer der Baureihe Smart SN von Honeywell FEMA messen Relativdrücke in Bereichen von -1...+1 bar und 0-40 bar. Sie eignen sich besonders als Druckaufnehmer in den Bereichen Maschinenbau, Versorgungstechnik, Umwelttechnik und Heizungs-Lüftungs-Klimatechnik. Der Einbau der Geräte erfolgt über ein G1/2" Außengewinde direkt in die

Druckleitung. Einfache Eingabe der Schaltpunkte über großzügig dimensionierte Tastatur und grafisches Display. Es stehen 2- und 3-Leiter Ausführungen, sowie Ausführungen für Wechselspannungsversorgung zur Verfügung.

*Alle 2-Leiter-Varianten SIL2 nach IFC 61508-2 SIL2 FUNCTIONAL

Technische Daten

Messbereiche

relativ -1...+40 bar

Umgebungstemperatur

Versionen ohne HMI -20...+80 °C Versionen mit HMI -20...+70 °C

Lagertemperatur

Versionen ohne HMI -40...+80 °C Versionen mit HMI -30...+80 °C Mediumstemperatur -20...+80 °C Relative Luft-0...95 %

nicht kondensierend feuchtiakeit Gesamtgenauigkeit 0,5 % vom Endwert

Gewicht

300 Gramm Versionen ohne HMI Versionen mit HMI 350 Gramm Mediumerührte Teile Edelstahl (1.4571)

Prozessanschluss

Manometeranschluss G1/2" Außengewinde

Elektrischer Anschluss

Steckanschluss 5-polia M12x1 Schutzklasse III gemäß EN 61140

Schutzart

Versionen ohne HMI IP 67 Versionen mit HMI IP 65 Spannungsversorgung

2-Leiter

18...35 Vdc 24 Vac/dc -10/+20% 3-Leiter **EMV** gemäß EN 61326

Mechanische Stabilität

Vibration 20 g gemäß IEC

68-2-6 (bis 2000 Hz)

100 g gemäß IEC Schock

68-2-27

Ausgänge

max. 500 0hm (Bürde) Stromausgang

Spannungsausgang min.15 K0hm

Transmitterausgang

(Analog)

Strom/Spannung 0/2...10 V.

0/4...20 mA konfigurierbar

(auch invertierbar)

Gehäuse und Deckel PA66 GF25

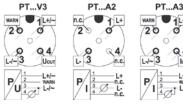
Funktionsumfang

- · Mikroprozessorunterstützter Druckaufnehmer in 2- und 3-Leiter Technik
- · Skalierbar bis 50 % des Nenndruckbereiches über die Anzeige

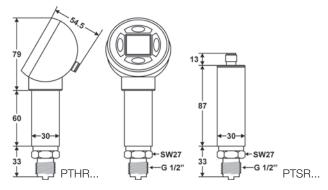
Konfiguration des Analogausgangs über die Anzeige:

- · 0-10 V, 2-10 V, 0-20 mA, 4-20 mA, Werte auch invertierbar
- · Auswahl der Druckeinheit bar, Pa oder psi

Anzeigefunktionen von Smart SN


- · In 90°-Schritten per Software drehbares grafisches Display.
- · Anzeige des aktuellen Druckes
- · Anzeige des aktuellen Analogausganges (Spannung oder Strom)
- · WARN-Anzeige durch eingeblendete Fehlercodes

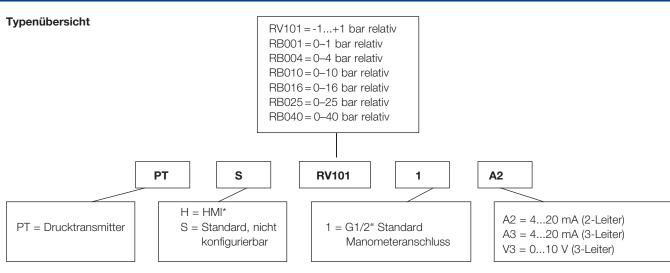
Sonstiges:


- · Restore-Funktion
- · Warn-Funktion bei Fühlerdefekt, Überlastung und Überhitzung des Gerätes
- · Manueller Nullpunktabgleich
- · Verriegelung über 4-stelligen Code

Elektrischer Anschluss:

- · 5-poliger M12x1 Steckeranschluss, Form A
- · Mittelpin elektrisch nicht anschließbar
- · M12x1 Kupplung im Lieferumfang enthalten

Maßzeichnung (Angaben in mm)


Hinweis:

CE

Reaktionszeit: 100ms

Druckschläge, die kürzer als die Reaktionszeit von 100ms andauern, werden nicht als Peak (Spitzenwert) erfasst und abgespeichert. Abhilfe für Druckschläge kann ein vorgebauter Druckstoßminderer DMW leisten.

* HMI = **H**uman **M**achine Interface = Digitalanzeige + Dateneingabe per Drucktasten

2-Leiter

Туре	Druck in bar	Max. zul. Druck (bar)	Туре
PTSRV1011A2	-1+1	4	PTHRV1011A2
PTSRB0011A2	01	4	PTHRB0011A2
PTSRB0041A2	04	8	PTHRB0041A2
PTSRB0101A2	010	20	PTHRB0101A2
PTSRB0161A2	016	32	PTHRB0161A2
PTSRB0251A2	025	50	PTHRB0251A2
PTSRB0401A2	040	80	PTHRB0401A2

Sicherheitste	Sicherheitstechnische Kennzahlen (IEC61508-2)					
Туре	DC	PDF	PDF	PDF	SIL-Level	
		$(T_{proof} = 1 \text{ years})$	$(T_{proof} = 5 \text{ years})$	$(T_{proof} = 10 \text{ years})$		
PTSRA2	0%	1,32E-04	6,61E-04	1,32E-03	SIL2	
PTHRA2	0%	1,32E-04	6,61E-04	1,32E-03	SIL2	

3-Leiter

O LOICOI			
Туре	Druck in bar	Max. zul. Druck (bar)	Туре
PTSRV1011V3	-1+1	4	PTHRV1011V3
PTSRB0011V3	01	4	PTHRB0011V3
PTSRB0041V3	04	8	PTHRB0041V3
PTSRB0101V3	010	20	PTHRB0101V3
PTSRB0161V3	016	32	PTHRB0161V3
PTSRB0251V3	025	50	PTHRB0251V3
PTSRB0401V3	040	80	PTHRB0401V3
PTSRV1011A3	-1+1	4	
PTSRB0011A3	01	4	
PTSRB0041A3	04	8	
PTSRB0101A3	010	20	
PTSRB0161A3	016	32	
PTSRB0251A3	025	50	
PTSRB0401A3	040	80	

Über die Anzeige des Drucktransmitter PTH....V3 lässt sich das Ausgangssignal 0–10V oder 4–20mA einstellen.

Smart SN DIFF

Mikroprozessorunterstützter Differenzdruckmessumformer

Die mikroprozessorunterstützten Differenzdrucktransmitter der Baureihe Smart SN DIFF von Honeywell FEMA messen Differenzdrücke und Relativdrücke in 6 Druckstufen von 0-100 mbar bis 0-20 bar. Differenzdrucktransmitter sind bestens geeignet für vielfältige Einsatzbereiche, u. a. zur genauen Erfassung, Überwachung und Regelung von Differenzdrücken. Hierzu zählen in erster Linie Anwendungen der Pumpen- und Filterüberwachung.

Technische Daten

Messbereiche relativ 0-100 mbar

his 0-20 har

Umgebungstemperatur

Versionen ohne HMI -20...+80 °C -20...+70 °C Versionen mit HMI

Lagertemperatur

-40...+100 °C Versionen ohne HMI -30...+80 °C Versionen mit HMI Mediumstemperatur -20...+80 °C Relative Luft-0...95 %

feuchtigkeit nicht kondensierend Genauigkeit 1,00 %, ausgenom-

men PTHDM 1002...

Gewicht

Versionen ohne HMI 350 Gramm Versionen mit HMI 450 Gramm

Mediumberührte Teile Edelstahl 1.4404 (AISI

316L)

2x G1/4" **Prozessanschluss**

Innengewinde

Elektrischer Anschluss 5-poliger M12x1-

Stecker, "A"

Schutzklasse III gemäß EN 61140

(PELV)

Schutzgrad

Versionen ohne HMI IP 67 gemäß

EN 60529-2

Versionen mit HMI IP 65 gemäß

EN 60529-2

EMV gemäß EN 61326

Klimaklasse

Innenräume 4K4H gemäß

> EN 60721-3-4 3K8H gemäß

Im Freien EN 60721-3-3

Spannungsversorgung

2-Leiter 18...35 Vdc

3-Leiter 24 Vac/dc -10/+20%

max. 50 mA

EMV gemäß EN 61326

Mechanische Stabilität

Vibration 20 g gemäß IEC

68-2-6 (bis 2000 Hz)

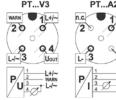
100 g gemäß IEC Schock

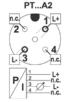
68-2-27

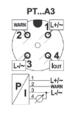
Funktionsumfang

- · Mikroprozessorunterstützter Druckaufnehmer in 2- und 3-Leiter Technik
- · Skalierbar bis 50 % des Nenndruckbereiches über die Anzeige

Konfiguration des Analogausgangs über die Anzeige:

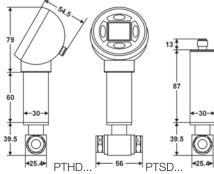

- · 0-10 V, 2-10 V, 0-20 mA, 4-20 mA, Werte auch invertierbar
- · Auswahl der Messeinheit in %, bar, Pa oder psi


Anzeigefunktionen von Smart SN


- · In 90°-Schritten per Software drehbares grafisches Display.
- · Anzeige des aktuellen Differenzdruckes in bar, Pa, psi %
- Anzeige des aktuellen Analogausganges (Spannung oder Strom)
- · WARN-Anzeige durch eingeblendete Fehlercodes und Hintergrundbeleuchtung rot

Elektrischer Anschluss:

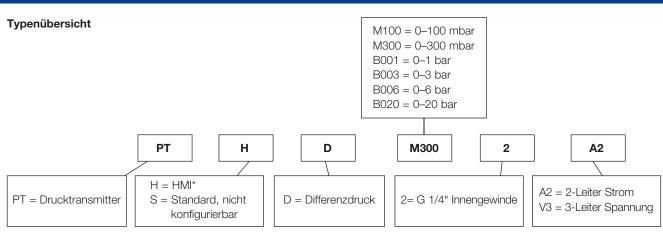
- · 5-poliger M12x1 Steckeranschluss, Form A
- · Mittelpin elektrisch nicht anschließbar
- · M12x1 Kupplung im Lieferumfang enthalten



Sonstiges:

- · Restore-Funktion
- · Warn-Funktion bei Fühlerdefekt, Überlastung und Überhitzung des Gerätes
- · Manueller Nullpunktabgleich
- · Verriegelung über 4-stelligen Code

Maßzeichnung (Angaben in mm)



Hinweis:

Reaktionszeit: 100ms

Druckschläge, die kürzer als die Reaktionszeit von 100ms andauern, werden nicht als Peak (Spitzenwert) erfasst und abgespeichert. Abhilfe für Druckschläge kann ein vorgebauter Druckstoßminderer DMW leisten.

*HMI = **H**uman **M**achine Interface = Digitalanzeige + Dateneingabe per Drucktasten

2-Leiter

Туре	Messbe- reich (bar)	max. zul. Differenz- druck (bar)	Überdruck * (bar)	Berstdruck ** zw. "high" und "low" (bar)	Max. zul. Anlagen- druck (bar)	max. zul. Differenz- druck zw. "low" und "high" (bar)	Berstdruck ** zw. "low" und "high" (bar)
PTHDM1002A2	0-0,100	0,2	> 0,2 < 0,4	≥ 0,4	70	< 0,4	≥ 0,4
PTHDM3002A2	0-0,300	0,6	> 0,6 < 1,2	≥ 1,2	70	< 1,2	≥ 1,2
PTHDB0012A2	0-1	2,0	> 2,0 < 4,0	≥ 4,0	70	< 4,0	≥ 4,0
PTHDB0032A2	0-3	6,0	> 6,0 < 12,0	≥12,0	70	< 8,0	≥ 8,0
PTHDB0062A2	0-6	12,0	> 12,0 < 24,0	≥ 24,0	70	< 8,0	≥ 8,0
PTHDB0202A2	0-20	40,0	> 40,0 < 80,0	≥ 80,0	70	< 8,0	≥ 8,0

^{*:} Fehlermeldung "error13" (behebbar); **: Fehlermeldung "error13" (nicht behebbar)

3-Leiter

Туре	Mess- bereich (bar)	max. zul. Differenz- druck (bar)	Überdruck * (bar)	Berst- druck ** zw. "high" und "low" (bar)	Max. zul. Anlagen- druck (bar)	max. zul. Differenz- druck zw. "low" und "high" (bar)	Berst- druck ** zw. "low" und "high" (bar)	Type mit Digitalanzeige
PTSDM1002V3	0-0,100	0,2	> 0,2 < 0,4	≥ 0,4	70	< 0,4	≥ 0,4	PTHDM1002V3
PTSDM3002V3	0-0,300	0,6	> 0,6 < 1,2	≥ 1,2	70	< 1,2	≥ 1,2	PTHDM3002V3
PTSDB0012V3	0-1	2,0	> 2,0 < 4,0	≥ 4,0	70	< 4,0	≥ 4,0	PTHDB0012V3
PTSDB0032V3	0-3	6,0	> 6,0 < 12,0	≥12,0	70	< 8,0	≥ 8,0	PTHDB0032V3
PTSDB0062V3	0-6	12,0	> 12,0 < 24,0	≥ 24,0	70	< 8,0	≥ 8,0	PTHDB0062V3
PTSDB0202V3	0-20	40,0	> 40,0 < 80,0	≥ 80,0	70	< 8,0	≥ 8,0	PTHDB0202V3

^{*:} Fehlermeldung "error13" (behebbar); **: Fehlermeldung "error13" (nicht behebbar)

Über die Anzeige des Drucktransmitter PTH...V3 lässt sich das Ausgangssignal 0 - 10 V oder 4 - 20 mA einstellen.

Messbereich:

Definierter Differenzdruckmessbereich, indem das Gerät zuverlässig messen kann. Differenzdrücke, welche diesen Wert überschreiten, werden nicht mehr zuverlässig gemessen. Innerhalb dieser Bereiche funktioniert der Sensor gemäß seiner Spezifikation. Der Messbereich finden sich auch in der Bestellbezeichnung wieder. Z. B. PTHD**M300**2V3 bedeutet Messbereich 0–300mbar.

Maximal zulässiger Differenzdruck:

Überdruckbereich, definiert als maximal zulässiger Differenzdruck zwischen den Anschlüssen "L" und "H". Differenzdrücke innerhalb dieses Bereiches führen erfahrungsgemäß nicht zu einer Beeinträchtigung der Messgenauigkeit. Differenzdrücke, welche diesen Bereich überschreiten, können die Genauigkeit der Sensorik beeinflussen und/oder die konstruktiven Eigenschaften dauerhaft verschlechtern.

Berstdruck:

Der Berstdruck ist definiert als Differenzdruck, welcher die Beschädigung des Sensors zur Folge hat. Differenzdrücke, die die Berstdruckgrenze überschreiten, führen zur Beschädigung der Sensorik.

Maximal zulässiger Systemdruck:

Anlagendruck, welcher gleichzeitig an beiden Druckanschlüssen "H" und "L" angeschlossen werden darf, ohne das Sensorelement zu dejustieren oder langfristig zu schädigen. Darüber hinaus darf der Druck überdruckseitig "H" bis zum maximal zulässigen Differenzdruck aufgelastet werden, ohne dass die Sensorik dejustiert oder langfristig geschädigt wird.

Achtung:

Bestimmungsgemäß muss der niedrige Druck bei "L" - und der hohe bei "H" angeschlossen werden. Vertauschen der Druckanschlüsse (Anschluss des höheren Druckes am Eingang für niedrigen Druck "L") kann ab max. zul. Differenzdruck bei Überdruck am "L"-Druckanschluss (siehe obige Tabelle) zur Beschädigung der Messzelle führen.

HINWEIS: Geräte ohne HMI (PTSD...) sind nicht mit Stromausgang erhältlich.

PTI/PTU

Drucktransmitter

Die Drucktransmitter der Typenreihe PTI (2-Leiter) und PTU (3-Leiter) sind zur Erfassung des Relativdruckes in flüssigen und gasförmigen Medien geeignet. Die Messgröße Druck wird in ein analoges Stromsignal (PTI) oder

Spannungssignal (PTU) umgewandelt. Bei dem Sensor handelt es sich um ein piezoresistiven Siliziumsensor, der in eine Edelstahlmesszelle eingebaut ist.

Technische Daten

Messbereiche relativ

PTI (2-Leiter) 0...40 bar PTU (3-Leiter) 0...16 bar

Temperatur

-20...+85 °C Umgebung Medium -30...+125 °C -40...+125 °C Lager Nullsignalabweichung ≤0,3 % vom Endwert Thermische Hysterese ≤ ±0,8 % vom Endwert **Kennlinienabweichung** $\leq \pm 0.5 \%$ vom Endwert Hysterese $\leq \pm 0.2$ % vom Endwert Wiederholbarkeit ≤ 0,1 % vom Endwert Mediumberührte Edelstahl (1.4305),

Teile Dichtung: FKM (Viton) Gehäuse Edelstahl 1.4305 **Prozessanschluss** G1/2" Außengewinde

Elektronischer Steckverbinder nach Anschluss DIN 175301, Form A, Leitungsquerschnitt max. 1,5 mm²

Einbaulage beliebig gemäß EN61326

IP65 Schutzgrad

Spannungsversorgung

10...30 VDC 24 VAC/DC ±10% PTI (2-Leiter) PTU (3-Leiter)

Signalausgang: PTI (2-Leiter)

4...20 mA PTU (3-Leiter) 0...10 V

Mech. Schwingungen Vibration

20 g bei 15...2000 Hz (nach DIN IEC 68-2-6)

100 g Schock

gemäß DIN IEC 68-2-27

Gewicht 100 a

Lieferumfang Steckverbinder enthalten

Elektrischer Anschluss

PTI

Anschluss		Leitungsdo 175301, Fo	ose nach DIN rm A
Spannungsversorgung 1030 VDC	⊕	1 + 2 -	2 5 3
Ausgang 420 mA, Zweileiter	\rightarrow	1 + 2 -	
F.E.	<u>_</u>	4	

PTU

Anschluss		Steckverbi 175301, Fo	nder nach DIN rm A
Spannungsversorgung 24 VAC/DC	→	1+2-	2 50 3
Ausgang 010 V	\rightarrow	2 - 3 +	

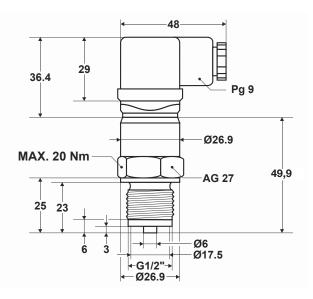
Anschluss Steckverbinder

Hinweis:

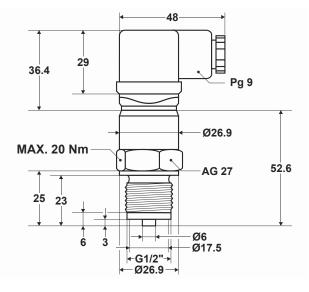
Zur Einhaltung der Schutzart IP65 muss der Steckverbinder vollständig - mit den mitgelieferten Dichtungen (8) - montiert und ein Kabel von geeignetem Durchmesser (6...8 mm) verwendet werden.

CE Schutzart:

PTI


Тур	Messbereich (bar)	max. zul. Druck (bar)	Berstdruck (bar)
PTI4	04	12	20
PTI6	06	18	30
PTI10	010	30	50
PTI16	016	48	80
PTI25	025	75	125
PTI140	040	120	200

PTU


Тур	Messbereich (bar)	max. zul. Druck (bar)	Berstdruck (bar)
PTU4	04	12	20
PTU6	06	18	30
PTU10	010	30	50
PTU16	016	48	80

Abmessungen (Angaben in mm)

PTI

PTU

DTI/DTU

Differenz-Drucktransmitter

Die Differenz-Drucktransmitter der Typenreihe DTI (2-Leiter) und DTU (3-Leiter) messen Differenzdrücke in sechs Druckstufen von 0-600 mbar bis 0-10 bar. Diese Differenz-Drucktransmitter sind zur Erfassung der Drücke von flüssigen und gasförmigen Medien geeignet. Die Messzelle ist dichtungsfrei in eine Edelstahl-Messkammer eingeschweißt.

Technische Daten

Messbereiche relativ 0-0,6 bar bis 0 - 10 bar

Temperatur

Umgebung -20...+80 °C Medium -15...+100 °C -50...+100 °C Lager Nullsignalabweichung ≤0.3 % vom Endwert

Thermische Hysterese

Messbereich ≤ 0,6 bar Messbereich > 0,6 bar < +1 % vom Endwert $\leq \pm 0.5$ % vom Endwert **Kennlinienabweichung** $\leq \pm 0.5$ % vom Endwert ≤ ±0,2 % vom Endwert

Hysterese Wiederholbarkeit ≤ 0,1 % vom Endwert

Mediumberührte Edelstahl 1.4571. Teile 1.4435, 1.4305 Gehäuse PA66, PBT GF30

2 x G1/8" Innengewinde **Prozessanschluss** Elektronischer Steckverbinder nach

DIN 175301, Form A, Leitungsquerschnitt max. 1,5 mm²

EMV gemäß EN61326

Schutzgrad

Spannungsversorgung

10...30 VDC DTI (2-Leiter) DTU (3-Leiter) 24 VAC/DC ±10%

Signalausgang: DTI (2-Leiter)

Anschluss

4...20 mA DTU (3-Leiter) 0...10 V

Mech. Schwingungen

Vibration 20 g bei 15...2000 Hz

(nach DIN IEC 68-2-6)

100 g Schock

gemäß DIN IEC 68-2-27

Gewicht 180 g

Lieferumfang Steckverbinder enthalten

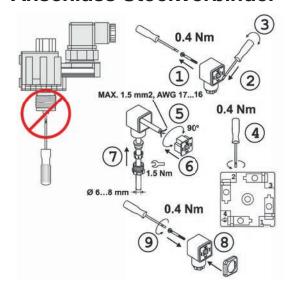
Einbaulage vorzugsweise

Druckanschlüsse in der Senkrechten. Bei Abweichung von dieser Einbaulage kann ein Fehler von 2 mbar auftreten

Druckanschlüsse

hoher Druck (+): oben niedriger Druck (-): unten

Elektrischer Anschluss


DTI

Anschluss		Steckverbinder nach DIN 175301, Form A		
Spannungsversorgung 1030 VDC	→	1 + 2 -	2 3	
Ausgang 420 mA,	\rightarrow	1 + 2 -		
F.E.	<u></u>	4	4 0 1	

DTU

Anschluss			oinder nach 01, Form A
Spannungsversorgung 24 VAC/DC	→	1 + 2 -	2 5 3
Ausgang 010 V	\rightarrow	2 - 3 +	
F.E.	<u></u>	4	4

Anschluss Steckverbinder

Hinweis:

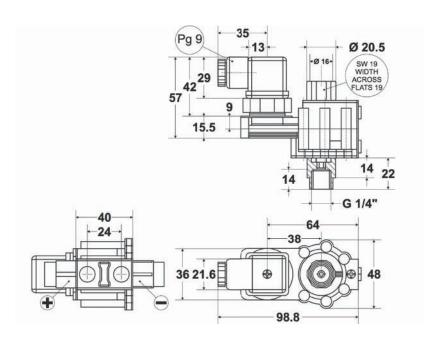
Zur Einhaltung der Schutzart IP65 muß der Steckverbinder vollständig - mit den mitgelieferten Dichtungen (8) - montiert und ein Kabel von geeignetem Durchmesser (6...8 mm) verwendet werden.

CE Schutzart:

DTI

Modell	Messbereich	max. Systemdruck	Berstdruck	Gesamtfehler ² (vom Endwert)	Langzeitstabili- tät, pro Jahr
DTI06 DTI1	0 +0,6 bar 0 +1 bar	5 bar		≤ 2,3 %	≤ 0,6 %
DTI2	0 +2,5 bar	10 bar	> 60 bor	≤ 2,0 %	≤ 0,6 %
DTI4 DTI6	0 +4 bar 0 +6 bar	30 bar ¹)	≥ 60 bar	≤ 1,8 %	≤ 0,4 %
DTI10	0 +10 bar			≤ 1,5 %	

¹⁾ Max. Umgebungstemperatur +60 °C 2) Beinhaltet Linearität, Hysterse, Reproduzierbarkeit und Temperaturdrift im °C Bereich von -15...+85


DTU

Modell	Messbereich	max. Systemdruck	Berstdruck	Gesamtfehler ² (vom Endwert)	Langzeitstabili- tät, pro Jahr
DTU06 DTU1	0 +0,6 bar 0 +1 bar	5 bar		≤ 2,3 %	≤ 0,6 %
DTU2	0 +2,5 bar	10 bar	> 60 bor	≤ 2,0 %	≤ 0,6 %
DTU4 DTU6	0 +4 bar 0 +6 bar	30 bar ¹)	≥ 60 bar	≤ 1,8 %	≤ 0,4 %
DTU10	0 +10 bar			≤ 1,5 %	

¹⁾ Max. Umgebungstemperatur +60 °C 2) Beinhaltet Linearität, Hysterse, Reproduzierbarkeit und Temperaturdrift im °C Bereich von -15...+85

Abmessungen (Angaben in mm)

DTI/DTU

DPTE (D)

Differenzdrucktransmitter, piezo-resistiv, für gasförmige, nicht aggressive Medien

Die Differenzdrucktransmitter der Serie DPTE dienen zur Überwachung von gasförmigen, nicht aggressiven Medien.

Mögliche Einsatzgebiete sind:

- · Klima- und Lüftungstechnik,
- · Gebäudeautomation
- · Umweltschutz
- · Ventilatoren- und Gebläseüberwachung
- · Überwachung von Lüftungsklappen
- · Filterüberwachung

SIL1 nach IEC 61508-2

Technische Daten

Druckmedien

Luft sowie nichtbrennbare und nichtaggressive Gase.

Druckanschluss

Kunststoffstutzen mit 6 mm Außendurchmesser für Messschlauch mit 5 mm Innendurchmesser. Stutzen P 1 für höheren Druck, P 2 für niedrigeren Druck.

Kabeleinführung / Elektr. Anschluss M 20 x 1,5, Schraubklemmen für Drähte und Litzen bis 1.5 mm² Leitungsguerschnitt. 5-10 mm

Leitungsdurchmesser (Mantel) Schutzart nach **DIN 40050** Montage

IP 54 mit Haube, IP 00 ohne Haube Beliebige Einbaulage

mit beiliegenden Kerbschrauben

Werkstoffe

Transmittergehäuse und Druckanschluss P2 aus ABS, hellgrau. Befestigungsteil mit Druckanschluss P1 aus POM, weiß. < = + 1 % vom Endwert

Linearitäts- und Hysteresefaktor

Langzeitstabilität

< = \pm 0,5 % bis vom ± 2,5 % vom / Jahr, je Druckbereich

Wiederholgenauigkeit < ± 0,2 % vom Endwert Lageabhängigkeit

< ± 0,02 % vom Endwert/g

Reaktionszeit

umschaltbar 100 ms/1sec 0 °C bis +50 °C

Medium- u. Umgebungstemperatur Zulässige Luft-

0-95 % nicht konden-

feuchtigkeit Betriebsspannung sierend 18...30 V AC/DC 18...30 V DC (2-Leiter)

Leistungsaufnahme max. 1 W Ausgangssignal

0-10 V, kurzschlussfest

gegen Masse 4-20 mA, kurzschluss $fest \le 30 \text{ mA}$

gen u. Gewicht Normen und Konformität

Gehäuseabmessun- Durchmesser 85 mm x 58 mm, 130 g EN 60770, EN 61326

Mitgeliefertes Zubehör

2 m Silikonschlauch, 2 Anschlussstutzen mit Befestigungsschrauben 2 selbstschneidende Schrauben zur Befestigung des Gehäuses

Differenzdrucktransmitter in 3-Leiter-Ausführung

Туре	Voreingestellter Arbeitsbereich in Pa	Durch Jumper erweiterter Arbeitsbereich in Pa		
ohne Digitalanzeige Ausgangssignal 0-10 V und 4-20 mA Stromaufnahme: max 60 mA				

_		
DPTE50S	-50/+50	nicht möglich
DPTE100S	-100/+100	nicht möglich
DPTE500S	-500/+500	nicht möglich
DPTE1000S	-1000/+1000	nicht möglich
DPTE100	0-100	0-250
DPTE250	0-250	0-500
DPTE500	0-500	0-1000
DPTE1000	0-1000	0-2500
DPTE5000	0-5000	0-10000

mit Digitalanzeige, Ausgangssignal 0-10 V und 4-20 mA, Stromaufnahme: max. 110 mA

DPTE50SD	-50/+50	nicht möglich
DPTE100SD	-100/+100	nicht möglich
DPTE500SD	-500/+500	nicht möglich
DPTE1000SD	-1000/+1000	nicht möglich
DPTE100D	0-100	0-250
DPTE250D	0-250	0-500
DPTE500D	0-500	0-1000
DPTE1000D	0-1000	0-5000
DPTE5000D	0-5000	0–10000

Differenzdrucktransmitter in 2-Leiter-Ausführung

Туре	Voreingestellter	Durch Jumper erweiterter	
	Arbeitsbereich	Arbeitsbereich	
	in Pa	in Pa	

ohne Digitalanzeige, Ausgangssignal 4-20 mA, Stromaufnahme: max. 21 mA

DPTE52S	-50/+50	nicht möglich
DPTE102S	-100/+100	nicht möglich
DPTE102	0-100	0-250
DPTE252	0-250	0-500
DPTE502	0-500	0-1000
DPTE1002	0-1000	0-2500
DPTE5002	0-5000	0–10000

Legende:

CE

DPT: Differential Pressure Transmitter (Differenzdruck-Transmitter); **E:** Standardtype; A: Automatische Nullpunktkorrektur; Q8: Mehrbereichsvariante, umschaltbar über Drehschalter; S: Symetrisch +/- Druckbereich; D: Digitalanzeige LED rot

Schutzart:

DPTA (D), DPTAQ (D)

Differenzdrucktransmitter, piezo-resistiv, für gasförmige, nicht aggressive Medien

DPTAQ mit 8 Messbereichen und automatischer Nullpunktkorrektur für geringste Lagerhaltung und im Einsatz minimalsten Servicezugriff. DPTA ist eine spezielle Variante für die Messung von niedrigsten Druck- und Differenzdrücken -25/+25 Pa, bzw. 0-25/0-50 Pa in der Reinraumtechnik.

Die Differenzdrucktransmitter der Serie DPTA dienen zur Überwachung von gasförmigen, nicht aggressiven Medien.

Mögliche Einsatzgebiete sind:

- · Klima- und Lüftungstechnik,
- · Gebäudeautomation
- · Umweltschutz
- · Ventilatoren- und Gebläseüberwachung
- · Überwachung von Lüftungsklappen
- · Filterüberwachung

SIL1 nach IEC 61508-2

Technische Daten

Druckmedien Luft sowie nicht-

brennbare und nichtaggressive Gase

Druckanschluss

Kunststoffstutzen mit 6 mm Außendurchmesser für Messschlauch mit 5 mm Innendurchmesser. Stutzen P 1 für höheren Druck, P 2 für niedrigeren Druck.

Kabeleinführung / Elektr. Anschluss

M 20 x 1,5, Schraubklemmen für Drähte und Litzen bis 1.5 mm² Leitungsguerschnitt.

Leitungsdurchmesser (Mantel)

Schutzart nach DIN 40050 Montage

IP 54 mit Haube. IP 00 ohne Haube Beliebige Einbaulage

mit beiliegenden Kerb-

schrauben

5-10 mm

Werkstoffe

Transmittergehäuse und Druckanschluss P2 aus ABS, hellgrau. Befestigungsteil mit Druckanschluss P1 aus POM, weiß

Linearitäts- und Hysteresefaktor

< = + 1 % vom Fndwert

Langzeitstabilität

< = \pm 0,5 % bis vom ± 2,5 % vom / Jahr. ie Druckbereich

Wiederholgenauigkeit < ± 0,2 % vom Endwert

Lageabhängigkeit

Reaktionszeit

 $< \pm 0.02 \% \text{ vom}$ Endwert/g umschaltbar

Medium- u. Um-

100 ms/1sec 0 °C bis +50 °C

gebungstemperatur Zulässige Luft-

0-95 % nicht kondenfeuchtigkeit sierend

22...30 V AC/DC Betriebsspannung Leistungsaufnahme max. 1 W

Ausgangssignal 0-10 V, kurzschlussfest gegen Masse

4-20 mA, kurzschluss $fest \le 30 \text{ mA}$

gen u. Gewicht Normen und Konformität

Gehäuseabmessun- Durchmesser 85 mm x 58 mm, 130 g EN 60770, EN 61326

Mitgeliefertes Zubehör

2 m Silikonschlauch, 2 Anschlussstutzen mit Befestigungsschrauben 2 selbstschneidende Schrauben zur Befestigung des Gehäuses

8-Bereich Differenzdrucktransmitter in 3-Leiter-Ausführung mit automatischer Nullpunktkorrektur

Durch Drehschalter Type wählbare Arbeitsbereiche

ohne Digitalanzeige, Ausgangssignal 0-10 V und 4-20 mA,

Stromaufnahme: max. 160 mA

DPTAQ8 -50/+50, -100/+100, /-250/+250, -500/+500,

0-100, 0-250, 0-500, 0-1000

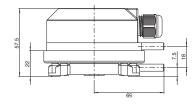
mit Digitalanzeige, Ausgangssignal 0-10 V und 4-20 mA, Stromaufnahme max. 210 mA

DPTAQ8D -50/+50, -100/+100, /-250/+250, -500/+500, 0-100, 0-250, 0-500, 0-1000

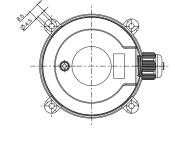
Differenzdrucktransmitter in 3-Leiter-Ausführung mit automatischer Nullpunktkorrektur

Туре	Voreingestellter Arbeitsbereich	Durch Jumper erweiterter Arbeitsbereich
	in Pa	in Pa

ohne Digitalanzeige, Ausgangssignal 0-10 V und 4-20 mA, Stromaufnahme: max. 160 mA


DPTA25S	-25/+25	nicht möglich	
DPTA25	0-25	0-50	

mit Digitalanzeige, Ausgangssignal 0-10 V und 4-20 mA, Stromaufnahme: max. 210 mA


DPTA25SD	-25/+25	nicht möglich	
DPTA25D	0-25	0-50	

Typenreihe DPTA (D), DPTAQ (D) und DPTE

Maßzeichnungen (Angaben in mm)

Ausschreibungstexte

DPTA

Differenzdrucktransmitter für gasförmige nicht aggressive Medien

Ausgangssignal 0...10 V, kurzschlussfest gegen Masse, 4...20 mA, kurzschlussfest < 30 mA, Arbeitsbereich: 0...25 Pa oder 0...50 Pa, mit automatischer Nullpunkt-Korrektur.

DPTAQ

Differenzdrucktransmitter für gasförmige nicht aggressive Medien

Ausgangssignal 0...10V, kurzschlussfest gegen Masse, 4...20 mA, kurzschlussfest < 30 mA, 8 Arbeitsbereiche wählbar, mit automatischer Nullpunkt-Korrektur.

DPTE

Differenzdrucktransmitter für gasförmige nicht aggressive Medien

Ausgangssignal 0...10V, kurzschlussfest gegen Masse, 4...20 mA, kurschlussfest < 30 mA, Arbeitsbereich: ...-... Pa

DTI

Differenz-Drucktransmitter zur Messung von Relativdrücken in Bereichen von 0 - 0,6 bar bis 0 - 10 bar, 2-Leiter, Spannungsversorgung 10 - 30 VDC, Ausgangssignal 4 - 20 mA

DTU

Differenz-Drucktransmitter zur Messung von Relativdrücken in Bereichen von 0 - 0,6 bar bis 0 - 10 bar, 3-Leiter, Spannungsversorgung 24 VAC/DC, Ausgangssignal 0 - 10 V

PST...-R

Elektronischer Druckschalter/Transmitter

mit 5-poligem Steckeranschluss nach DIN IEC 60947-5-2, Speisespannung: 14...36 V DC Nenndruckbereich ...-... mbar/bar, Ausgangssignal: 4–20 mA und 0–10 V, wähl- und invertierbar. Schaltausgänge: 2 Open-Collectoren (High-Side/ Low-Side), bzw. 1 Ausgang davon kann als Relaisausgang konfiguriert werden.

PTH, PTS

Drucktransmitter zur Messung von Relativdrücken in Bereichen von -1 ... + 1 bar bis 0 – 40 bar

PTHD, PTSD

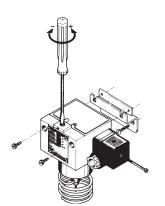
Differenzdrucktransmitter Smart SN DIFF zur Messung von Differenzdrücken und Relativdrücken in 6 Druckstufen von 0 – 100 mbar bis 0 – 20 bar

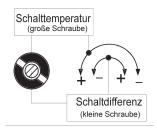
PTI

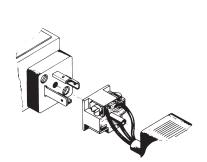
Drucktransmitter zur Messung von Relativdrücken in Bereichen von 0 – 4 bar bis 0 – 40 bar, 2-Leiter, Spannungsversorgung 10 – 30 VDC, Ausgangssignal 4 – 20 mA

PTU

Drucktransmitter zur Messung von Relativdrücken in Bereichen von 0 – 4 bar bis 0 – 16 bar, 3-Leiter, Spannungsversorgung 24 VAC/DC, Ausgangssignal 0 – 10 V


Drucktransmitter




Тур	Temperaturbereiche	Richtlinien für CE	Norm- grundlage	Kommentare	Seite
TAM	-20+130°C	2014/35/EU	DIN EN60730-1 DIN EN60730-2-6	Kapillarrohrthermostat	114
TRM	-20+50°C	2014/35/EU	DIN EN60730-1 DIN EN60730-2-6	Raumthermostat	105
TX	-20 +90°C	2014/35/EU	DIN EN60730-1 DIN EN60730-2-6	Stabthermostat	115
Ex-TAM	-20+130°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-d-Kapillarrohrthermostat	121
Ex-TRM	-20+50°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-d-Raumthermostat	122
Ex-TX	-20+90°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-d-Stabthermostat	120
TAM513	-20+130°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-i-Kapillarrohrthermostat	114, 102
TRM513	-20+50°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-i-Raumthermostat	105, 102
TX513	-20+90°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-i-Stabthermostat	115, 102
TXB513	-20+90°C	ATEX 2014/34/EU IECEx	DIN EN 60730 DIN EN 60079	Ex-i-Stabthermostat	115, 102
FT69	-8+8°C	2014/35/EU	DIN EN 60335-1	Frostschutzthermostat	109
FTSE	-8+8°C	2014/30/EU 2014/35/EU	DIN EN 61326-1 DIN EN 60730-1 DIN EN 60730-2-9	Elektronischer Frostschutzthermostat	110 – 111
STW	+20130°C	2014/35/EU 2014/30/EU 2014/68/EU	DIN EN 14597 DIN EN 61326-1 DIN EN 60730 DIN EN 55014-1	Temperaturwächter	116 – 118
STB	+20130°C	2014/35/EU 2014/30/EU 2014/68/EU	DIN EN 14597 DIN EN 61326-1 DIN EN 60730 DIN EN 55014-1	Temperaturbegrenzer	116 – 118
T6120A	060°C	2014/35/EU	DIN EN 60335-1	Raumthermostat 1 Wechselkontakt	106 – 108
T6120B	-30+30°C	2014/35/EU	DIN EN 60335-1	Raumthermostat 2 Wechselkontakte	106 – 108
Smart Temp TST	-50+400°C	2014/35/EU	DIN EN 61326-1 DIN EN 60730-1	Elektronischer Thermostat/ Transmitter	124 – 128

Allgemeine technische Informationen für Typenreihe TX, TRM und TAM

Justierung der Thermostate am unteren Schaltpunkt

Der Sollwert xs entspricht dem unteren Schaltpunkt (bei fallender Temperatur), der obere Schaltpunkt xo (bei steigender Temperatur) liegt um die Schaltdifferenz xo höher.

Einstellung der Schalttemperatur (Sollwerteinstellung)

Vor Verstellung ist der oberhalb der Skala liegende Gewindestift um ca. 2 Umdrehungen zu lösen und nach der Einstellung wieder anzuziehen.

Die Einstellung der Schalttemperatur erfolgt an der Spindel. Die eingestellte Schalttemperatur ist an der Skala ablesbar.

Durch Toleranzen und Streuungen in den Kennlinien der Fühler und Federn sowie durch Reibungen in der Schaltkinematik sind geringfügige Abweichungen zwischen Einstellwert und Schaltpunkt unvermeidbar. Die Thermostate werden in der Regel so eingestellt, dass im mittleren Bereich die Sollwerteinstellung und die tatsächliche Schalttemperatur am besten übereinstimmen. Mögliche Abweichungen verteilen sich nach beiden Seiten gleichmäßig.

Rechtsdrehung: Niedrige Schalttemperatur Linksdrehung: Hohe Schalttemperatur

Änderung der Schaltdifferenz (nur bei Raumthermostat TRMV...)

Die Änderung der Schaltdifferenz erfolgt durch Drehung am Gewindestift innerhalb der Einstellspindel. Durch die Differenzverstellung ändert sich der untere Schaltpunkt nicht, lediglich der obere Schaltpunkt wird um die Differenz verschoben. Bei einer Umdrehung der Differenzschraube ändert sich die Schaltdifferenz etwa um 1/2 des gesamten Differenzbereichs.

Bei der Einstellung ist zu beachten:

Schalttemperatur: Rechtsdrehung niedrigerer Schaltpunkt.

Linksdrehung höherer Schaltpunkt.

Schaltdifferenz: Rechtsdrehung größerer Differenz. Linksdrehung kleinere Differenz.

Elektroanschluss

Steckanschluss nach DIN EN175301. Kabeleinführung Pg 11, max. Kabeldurchmesser 10 mm. Kabelausgang in 4 Richtungen – jeweils um 90° versetzt – möglich.

Einbaulage

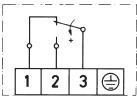
Senkrechte Einbaulage ist, wenn möglich, zu bevorzugen. Die Schutzart IP 54 ist bei senkrechter Einbaulage gewährleistet. Durch andere Einbaulage kann sich die Schutzart ändern, die Funktion der Thermostate wird nicht beeinträchtigt.

Montage der Thermostate im Freien

Die FEMA-Thermostate können auch im Freien installiert werden, sofern sie in senkrechter Einbaulage montiert und durch geeignete Maßnahmen vor direkten Witterungseinflüssen geschützt sind.

Bei Umgebungstemperaturen unter 0 °C ist dafür zu sorgen, dass im Sensor und im Schaltgerät kein Kondenswasser entstehen kann.

Mechanische Thermostate


Die wichtigsten technischen Daten

Schaltgehäuse Schaltfunktion und Anschlussplan

(gilt nur für Ausführung mit Mikroschalter)

Aluminium Druckguss GDAISi 12 Potentialfreier Umschaltkontakt Bei steigender Temperatur von 3-1 auf 3-2 einpolig umschaltend

Schaltleistung

(gilt nur für Ausführung mit Mikroschalter)

Einbaulage

Schutzart (bei senkrechter Einbaulage)

Elektrischer Anschluss Kabeleinführung Umgebungstemperatur

Schaltpunkt

Schaltdifferenz

Mediumstemperatur Vibrationsfestigkeit

Isolationswerte

8 A bei 250 V AC 5 A bei 250 V AC induktiv 8 A bei 24 V DC 0,2 A bei 110 V DC 0,3 A bei 250 V DC min. 10 mA, 12 V DC senkrecht oder waagrecht

vorzugsweise senkrecht

IP 54

Steckanschluss nach DIN EN175301 Pg 11

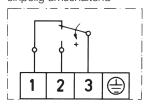
-15 bis +70 °C

An Stellspindel einstellbar.

einstellbar oder nicht einstellbar (siehe Typenübersicht)

max. 70 °C, kurzzeitig 85 °C

Bis 4 g keine nennenswerten Abweichungen.


Bei höheren Beschleunigungen verringert sich die Schaltdifferenz geringfügig.

Verwendung über 25 g nicht zulässig.

Überspannungskategorie III, Verschmutzungsgrad 3, Bemessungsstoßspannung 4000 V.

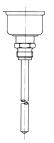
Die Konformität zu DIN VDE 0110 wird bestätigt.

Aluminium Druckguss GDAISi 12 Potentialfreier Umschaltkonakt. Bei steigender Temperatur von 3-1 auf 3-2 einpolig umschaltend

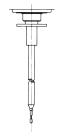
8 A bei 250 V AC 5 A bei 250 V AC induktiv 8 A bei 24 V DC 0,2 A bei 110 V DC 0,3 A bei 250 V DC min. 10 mA, 12 V DC senkrecht oder waagrecht vorzugsweise senkrecht

IP 65

Klemmenanschluss M 16 x 1,5 -15 bis +70 °C


nach Abnahme des Klemmenkastendeckels an Stellspindel einstellbar. einstellbar oder nicht einstellbar (siehe Typenübersicht) max. 70 °C, kurzzeitig 85 °C

Fühlersysteme



Raumfühler Kapillarrohrfühler TRM **TAM**

Stabfühler TX+R10

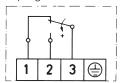
Luftkanalfühler TX+R6

Mechanische Thermostate

Die wichtigsten technischen Daten

Klemmenanschluss

...500 (Ex-i)


ξx -Ausführung

...700 (Ex-d)

Schaltgehäuse Schaltfunktion und **Anschlussplan**

(gilt nur für Ausführung mit Mikroschalter)

Aluminium Druckguss GDAISi 12 Potentialfreier Umschaltkontakt Bei steigender Temperatur von 3-1 auf 3-2 einpolig umschaltend

Schaltleistung

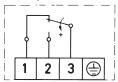
(gilt nur für Ausführung mit Mikroschalter)

max.: 100mA, 24VDC 2mA, 5VDC min.:

senkrecht mit Schaltgerät nach oben

Schutzart

Einbaulage


(bei senkrechter Einbaulage)

IP 65

🖾 II 1/2G Ex ia IIC T6 Ga/Gb ⟨Ex⟩II 1/2D Ex ia IIIC T80 °C

Aluminium Druckguss GDAISi 12 Potentialfreier Umschaltkonakt. Bei steigender Temperatur von 3-1 auf 3-2

einpolig umschaltend

3 A bei 250 V AC 2 A bei 250 V AC induktiv 3 A bei 24 V DC 0.1 A bei 250 V DC min. 2 mA, 24 V DC

senkrecht mit Schaltgerät nach oben

IP 65

Zündschutzart

mit Tauchhülse

🖾 II 2G Ex d e IIC T6 Gb

(Ex) II 1/2D Ex ta/tb IIIC T80 °C Da/Db

Ausnahme: EX-TRM...: ⟨Ex⟩ II 2G Ex d e IIC T6 Gb ⟨ि II 2D Ex th IIIC T80°C Db

Elektrischer Anschluss

Umgebungstemperatur

Kabeleinführung

Schaltpunkt

Schaltdifferenz

Klemmenanschluss

M 16 x 1,5 -15 bis +60 °C

nach Abnahme des Klemmenkastendeckels an Stellspindel einstellbar.

nicht einstellbar

Klemmenanschluss

M 16 x 1,5 -20 bis +60 °C

nach Abnahme des Klemmenkastendeckels an Stellspindel einstellbar.

nicht einstellbar

max. 60 °C

Mediumstemperatur

Vibrationsfestigkeit

max. 60 °C

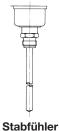
Bis 4 g keine nennenswerten Abweichungen.

Bei höheren Beschleunigungen verringert sich die Schaltdifferenz geringfügig.

Verwendung über 25 g nicht zulässig.


Überspannungskategorie III, Verschmutzungsgrad 3, Bemessungsstoßspannung 4000 V.

Die Konformität zu DIN VDE 0110 wird bestätigt.


Fühlersysteme

Isolationswerte

Kapillarrohrfühler **TAM**

TX+R10

Luftkanalfühler TX+R6

Raumfühler

TRM

Steckanschluss Reihe 200	Beschreibung	Anschlussplan
	Normalausführung Mikroschalter, einpolig umschaltend	1 2 3 🖨
ZFT213	Vergoldete Kontakte mit geringem Übergangswiderstand (z. B. für Niederspannung) Nicht mit einstellbarer Schaltdifferenz lieferbar	1 2 3 🖨
ZFT301	Klemmenanschlussgehäuse (IP 65)	1 2 3 🖨
ZFT351	Schutzart IP 65 und Schaltgehäuse mit Oberflächenschutz (Klemmenanschlussgehäuse)	
ZFT513	Ex-i-Ausstattung Gehäuse 500, Kabeleinführung und Klemmen blau Goldkontakte, Schutzart IP 65	
	Für den Versorgungsstromkreis gilt: U _i 24 V DC C _i 1 nF I _i 100 mA L _i 100 μH	

Mehrpreis der Zusatzfunktionen auf Anfrage.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

Bestellbeispiel:

Servicefunktionen

Geräte mit Servicefunktionen werden kundenbezogen einzeln gefertigt.

Dazu ist es systembedingt notwendig, diese Artikelkombinationen verwechslungsfrei zu bezeichnen. Hauptmerkmal dieser Kombination ist die Artikelbezeichnung mit dem Zusatz "-S" auf dem Verpackungslabel sowie separate Labels mit Barcodes für jede Servicefunktion.

Servicefunktionen	
ZFT5970	Einstellung des Schaltpunkts nach Kundenangaben
ZFT5971	Einstellung der Schaltpunkte nach Kundenangaben und Plombieren
ZF1978	Kennzeichnung der Geräte nach Kundenangaben d. Aufkleber
	Prüfbescheinigungen nach EN 10 204
WZ2.2	Werkszeugnis 2.2 aus nichtspezifischer Prüfung pro Exemplar
AZ3.1B1	Abnahmeprüfzeugnis 3.1 aus spezifischer Prüfung

*Schaltpunkteinstellung: Bitte Schaltpunkt und Wirkungsrichtung angeben (steigende oder fallende Temperatur). Die Servicefunktionen stehen für nachfolgende Typenreihen (inkl. Ex-Versionen) zur Verfügung: Thermostate: TAM, TX, TRM

Bestellablauf für Geräte mit Servicefunktionen: siehe Seite 29.

TRM

Raumthermostate für industrielle Räume

FEMA-Raumthermostate eignen sich für industrielle Anlagen, für Gewächshäuser, Viehställe und Lagerhallen sowie zur Überwachung der maximalen Temperatur in Schaltschränken und Relaisstationen. Raumthermostate werden einschließlich Wandbefestigung H1 geliefert.

TRM150

Luft und Klimatechnik

T6120A1005

T6120 A/B

Industrie-Raumthermostate

Thermostate eignen sich zur Temperaturüberwachung in Gewerberäumen, wie Lagerhallen, Maschinenräumen, Garagen, sowie in Gewächshäusern und landwirtschaftlich genutzten Räumen. Ausführungen mit Sensorelement aus Kupfer können zusätzlich in Feuchträumen, Kühl- und Gefrierzellen eingesetzt werden.

→ S. 106 - 107

Luft und Klimatechnik

Raum- und Kanalhygrostate

H6045A1000

Der einstufige Kanalhygrostat H6045A1002 und der einstufige Raumhygrostat H6120A1000 sind besonders geeignet zur Überwachung der relativen Raumfeuchte in Klimaanlagen und Klimaräumen, sowie zur Steuerung der Luftbe- und entfeuchter in Schwimmhallen. Beide Geräte besitzen einen staubgekapselten Mikroschalter mit hoher Schaltkapazität. Durch den einfachen und robusten Aufbau bieten sie eine kostengünstige Lösung für Anlagen der Heizungs-, Lüftungs- und Klimatechnik.

FT69

Frostschutzthermostate für Luftheizungs- u. Klimaanlagen

Sie erfassen die Temperatur über die ganze Länge der Kapillare. Bei Montage im Freien ist zu beachten, dass auch der Kessel am Schaltgerät temperaturempfindlich und damit Teil des aktiven Messsystems ist. Bei Abkühlung des Kapillarrohrs unter die eingestellte Schalttemperatur an beliebiger Stelle der Kapillare und mindestens auf eine Länge von 30 cm schaltet der Thermostat selbsttätig ab.

Es ist darauf zu achten, dass die gesamte Länge der Kapillare gleichmäßig auf dem ganzen Kanalquerschnitt verlegt wird. Bei Beschädigung der Kapillare schaltet die Thermostate zur sicheren Seite ab.

→ S. 109

STW/STB

Anlegethermostate

Selbstüberwachender Thermostat als Sicherheitstemperaturwächter und -begrenzer z. B. für den Einsatz in Fußbodenheizungen

Bei Bruch oder Beschädigung des Fühlers verhält sich der Anlegethermostat so, als ob die Temperatur den Einstellwert überschritten hätte. Er schaltet nach der sicheren Seite ab (z. B. Umwälzpumpe aus). Wichtig für eine sichere Funktion ist eine gründliche Reinigung der Rohroberfläche von Schmutz, Rost, Zunder und anhaftender Farbe. Jedem Thermostat ist ein Spannband beigefügt, das den Anbau an Rohre bis zu 100 mm Durchmesser zulässt. Zudem kann der Thermostat über eine Kapillare an der Wand befestigt werden. Eine optionale Tauchhülse erlaubt die Verwendung als Tauchthermostat. Hier zeigt sich die enorme Vielseitigkeit, welche sich ebenfalls in der geringen Lagerhaltung beim Kunden widerspiegelt. Zu den Neuerungen gehören u. a. eine automatische Temperaturkompensation, sowie die Push-In ® Klemmentechnik. Die Geräte sind CE-zugelassen, sowie geprüft nach DIN EN 14597

→ S. 116

FTSE

Elektronischer Frostschutzthermostat mit 2m und 6m Kapillarlänge.

Frostschutzthermostate werden luftseitig zur Absicherung von Klimaanlagen, Wärmetauschern, Heizregistern und ähnlichen Anlagen gegen Frostschäden oder Einfrieren eingesetzt. Mit dem elektronischen

Frostschutzthermostaten FTSE erweitert Honeywell FEMA seine elektromechanische Baureihe um eine elektronische Lösung.

TRM

Raumthermostate für industrielle Räume

FEMA-Raumthermostate eignen sich für industrielle Anlagen, für Gewächshäuser, Viehställe und Lagerhallen sowie zur Überwachung der maximalen Temperatur in Schaltschränken und Relaisstationen. Raumthermostate werden einschließlich Wandbefestigung H1 geliefert.

SIL 2 gemäß IEC 61508-2

Technische Daten

TRM150

Gehäuse Druckguss GD Al Si 12

nach DIN 1725. Beständig gegen ammoniakhaltige Dämpfe und gegen Seewasser

Einbaulage Beliebig,

vorzugsweise senkrecht

Max. Umgebungstemperatur

70 °C

Max. Temperatur 70 °C

am Fühler

Kontaktbestückung Einpoliger Umschalter

Schaltleistung 8 (5) A 250 V AC

IP 54 nach DIN EN Schutzart

175301 (bei senkrech-

tem Einbau)

Montage

Mit Befestigungswinkel H1 oder mit 2 Schrauben (Ø 4) direkt an der Wandfläche

Justierung Skalenwert entspricht

dem unteren Schaltpunkt (bei fallender Temperatur), der obere Schaltpunkt ist um die Schaltdifferenz

höher

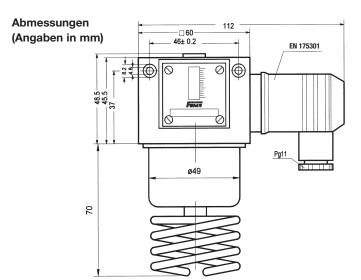
Steckanschluss Durch Winkelstecker

nach DIN EN175301 (3-polig + Schutzkontakt), Kabeleinführung Pg 11, max. Kabeldurchmesser 10 mm, Kabelausgang in 4 Richtungen - jeweils um 90 °C versetzt -

möglich.

Schalttemperatur

Von außen mittels Schraubendreher einstellbar


Schaltdifferenz

Bei TRM nicht einstellbar, bei TRMV einstellbar

Typenübersicht

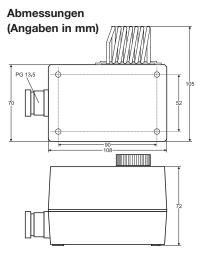
Тур	Einstellbereich	Schaltdifferenz (Toleranzspanne)		
Schaltdifferenz nicht ein	stellbar			
TRM022	−20 bis +20 °C	0,8 2,5 K		
TRM40	0 bis +40 °C	0,8 2,5 K		
TRM150	+10 bis +50 °C	0,8 2,5 K		
Schaltdifferenz einstellbar				
TRMV40	0 bis +40 °C	4 10 K		
TRMV150	+10 bis +50 °C	4 10 K		

Ex-TRM siehe Seite 122

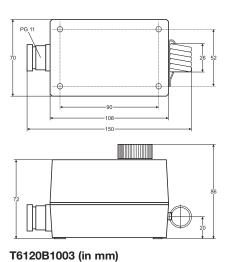
CE

T6120B1003

Raumthermostate Typenreihe T6120A, B

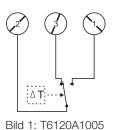

ein- und zweistufig

- · Flüssigkeitsgefüllte Kupfer- und Edelstahlfühler
- · Robuste Ausführung: Schutzart IP 54 bzw. IP 65
- · Einfache Installation und elektrische Verdrahtung
- · Staubdicht gekapselter Mikroschalter mit Wechselkontakt für Heizung und Kühlung


Einsatzbereiche

Die ein- und zweistufigen Raumthermostate der Serien T6120A und B sind geeignet für die Messung, Überwachung und Steuerung von Temperaturen in Heizungsund Kühlsystemen. Die Geräte finden in folgenden Bereichen ihre Anwendung:

- · Gewerbliche Räume
- · Lagerräume
- · Garagen
- · Maschinenräume
- · Fertigungshallen
- · Gewächshäuser
- ·Stallungen


T6120A1005 (in mm)

	T6120A1005	T6120B1003
Anzahl d. Schaltstufen	1	2
Kontaktart	1 Wechsel- kontakt	2 Wechsel- kontakt
Schaltdifferenz	1 K (fest)	1 K (fest)
Schaltabstand zwischen Stufen		210 K (einstellbar)
Einstellbereich	060 °C	-30+30 °C
Arbeitstemperatur	-10+65 °C	-15+60 °C
Lagertemperatur	-20+70 °C	
Zulässiger Schaltstrom	10 (1.5) A	15 (8) A
Zulässige Schalt- spannung	250 V AC	24250 V AC
Gehäusewerkstoff	ABS, glasfaserverstärkt	
Sensorwerkstoff	1.4301	Kupfer
Gewicht	360 g	530 g
Schutzart	IP 54	IP 65
Maße (B x H x L in mm)	108 x 7	70 x 72

Schutzart: IP 54/65

Funktion und Verdrahtung T6120A1005

Für die Steuerung eines Heizregisters werden die Kontakte 2 und 3 des Thermostaten verwendet. Mit steigender Temperatur öffnet der Kontakt (siehe Bild 1). Für die Steuerung eines Kühlregisters werden die Kontakte 1 und 2 verwendet. Mit fallender Temperatur öffnet der Kontakt (siehe Bild 1).

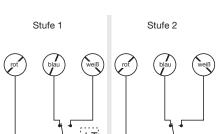
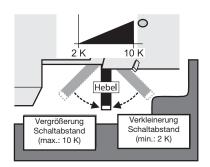



Bild 2: T6120B1003

Funktion und Verdrahtung T6120B1003

Für die Steuerung eines Heizregisters werden der rote und blaue Kontakt beider Stufen mit den entsprechenden Anschlüssen am Heizgerät verbunden. Bei steigender Temperatur öffnet zuerst der Kontakt der Stufe 1. Bei weiter steigender Temperatur öffnet entsprechend dem eingestellten Schaltabstand der Kontakt der Stufe 2. Für die Steuerung eines Kühlregisters werden der rote und weiße Kontakt beider Stufen mit den zugehörigen Anschlüssen am Kühlgerät verbunden. Bei fallender Temperatur öffnet zuerst der Kontakt der Stufe 1. Bei weiter fallender Temperatur öffnet entsprechend dem eingestellten Schaltabstand der Kontakt der Stufe 2 (siehe Bild 2). Dazu siehe auch Erläuterung: "Einstellung des Schaltabstandes zwischen 2 Schaltstufen beim T6120B1003".

Einstellung des Schaltabstandes zwischen 2 Schaltstufen bei T6120B1003

Der Schaltabstand zwischen den beiden Stufen kann im Bereich von 2 K (fabrikseitig eingestellt) und 10 K eingestellt werden. Nach Abziehen des Einstellrades kann durch Herausdrehen der beiden Gehäuseschrauben dieses geöffnet werden. Danach wird auf der Seite ein Einstellhebel mit Skala sichtbar. Durch Bewegung dieses Hebels nach rechts wird der Schaltabstand größer. Eine Bewegung nach links, lässt den Schaltabstand kleiner werden.

H6120A1000

Raum- und Kanalhygrostate Typenreihe H6045/H6120

einstufiq

Der einstufige Kanalhygrostat H6045A1002 und der einstufige Raumhygrostat H6120A1000 sind besonders geeignet zur Überwachung der relativen Raumfeuchte in Klimaanlagen und Klimaräumen, sowie zur Steuerung der Luftbe- und entfeuchter in Schwimmhallen. Weitere Anwendungsgebiete

sind die Luftfeuchteregelung in Lagerräumen für Lebensmittel, der Textil- und Papierindustrie, in Druckereien, in Anlagen der optischen und chemischen Industrie, sowie in Gewächshäusern und Krankenhäusern, überall wo relative Luftfeuchtigkeit gemessen, geregelt und überwacht werden muss.

Technische Daten

H6045A1002 Kanalhygrostat

Bereich **Relative Feuchte** Schaltvermögen Schalter Arbeitstemperatur Max. Luftgeschwindigkeit Schutzart Schutzklasse Toleranz Schalthysterese

Gehäusematerial

Gewicht

35...100 % r. F.

15 (8) A. 24...250 V AC einpoliger Wechsler -10 bis +65 °C

IP 65

max. 4% r. F. 5% r.F. ABS glasfaserverstärkt Beide Geräte besitzen einen staubgekapselten Mikroschalter mit hoher Schaltkapazität. Durch den einfachen und robusten Aufbau bieten sie eine kostengünstige Lösung für Anlagen der Heizungs-, Lüftungs- und Klimatechnik.

Type

H6045A1002 H6120A1000

H6120A1000 Raumhygrostat

Bereich **Relative Feuchte** Schaltvermögen Schalter Arbeitstemperatur Max. Luftgeschwindigkeit Schutzart Schutzklasse Toleranz Schalthysterese

Gehäusematerial

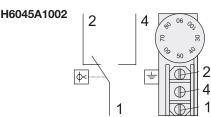
Schaltpunkteinstellung Der gewünschte Schaltpunkt wird mittels des Stellknopfes auf der

Oberseite des Gerätes eingestellt.

Durch die leicht lesbare Skala auf dem Stellknopf und dem auf der

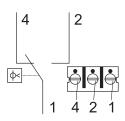
Gehäuseoberfläche aufgedruckten Zeigerpunkt lässt sich der gewünschte Feuchtigkeitswert sehr

Gewicht


35...100 % r. F.

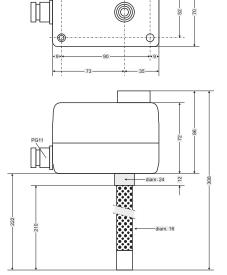
5 (0,2) A, 230 V AC einpoliger Wechsler 0 bis +60 °C 15 m/s

IP 30


max. 3% r. F. 4% r. F. ABS (weiß)

Elektrischer Anschluss

(0)


H6120A1000


98

6-

Abmessungen (Angaben in mm) H6045A1002

H6120A1000

Montage H6120A1000

Der Raumhygrostat H6120A1000 muss in ausreichender Entfernung von Wärmequellen sowie in sonnenabgewandter Position installiert werden. Es ist darauf zu achten, dass die Luft frei am Sensor vorbeiströmen kann. Die optimale Installationsposition an der Wand ist in einem Abstand von ca. 1,5 m Höhe vom Boden.

Montage H6045A1002

leicht einstellen.

Der Kanalhygrostat H6045A1002 kann mit dem beigelegten Anbausatz direkt in Lüftungskanäle eingebaut werden.

FT69

Frostschutzthermostate für Luftheizungs- u. Klimaanlagen

Sie erfassen die Temperatur über die ganze Länge der Kapillare. Bei Montage im Freien ist zu beachten, dass auch der Kessel am Schaltgerät temperaturempfindlich und damit Teil des aktiven Messsystems ist. Bei Abkühlung des Kapillarrohrs unter die eingestellte Schalttemperatur ab beliebiger Stelle der Kapillare und mindestens auf eine Länge von 30 cm schaltet der Thermostat selbstständig ab.

Es ist darauf zu achten, dass die gesamte Länge der Kapillare gleichmäßig auf dem ganzen Kanalquerschnitt verlegt wird. Bei Beschädigung der Kapillare schalten die Thermostate zu Sicherheit ab.

Technische Daten

Einstellbereich -8 °C...+8 °C Voreingestellt auf 5 °C fallend

Max. Fühlertemperatur 200 °C (max. 60 min)

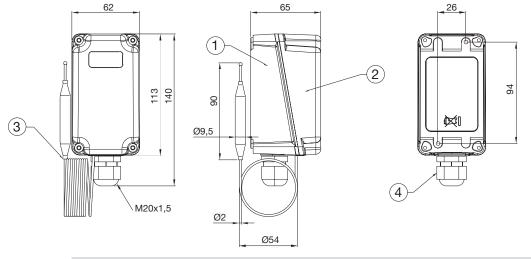
temperatur Schaltleistung Lagertemperatur Arbeitstemperatur Schaltdifferenz Schutzklasse Schutzart El. Anschluss

15 (8) A, 250 VAC -30 °C...+60 °C -20 °C...+55 °C 2K I IP 65 gemäß EN60529 Schraubklemmen

Gehäusewerkstoff Maße L x B x H Gewicht IP 65 gemäß EN60529 Schraubklemmen 1,5 mm 2 M 20 x 1,5 (ø 6–13 mm) Polykarbonat und ABS 125 x 75 x 62 mm 280 g

Туре	Schutzart	Kapillar- länge	Rückstellung	
FT6960-18	IP 65	1,8 m	manuell	
FT6960-30	IP 65	3,0 m	manuell	
FT6960-60	IP 65	6,0 m	manuell	
FT6961-18	IP 65	1,8 m	automatisch	
FT6961-30	IP 65	3,0 m	automatisch	
FT6961-60	IP 65	6,0 m	automatisch	

Mitgeliefertes Zubehör:


CE

- · Bei 3 und 6 m Versionen je 6 Stück Halteklammern inklusive.
- · Bei 1,8 m Versionen je 3 Stück Halteklammern inklusive.

Elektrischer Anschluss

Maßzeichnungen (Angaben in mm)

FTSE

Elektronischer Frostschutzthermostat mit 2m und 6m Kapillarlänge.

Frostschutzthermostate werden luftseitig zur Absicherung von Klimaanlagen, Wärmetauschern, Heizregistern und ähnlichen Anlagen gegen Frostschäden oder Einfrieren eingesetzt. Mit dem elektronischen

Frostschutzthermostaten FTSE erweitert Honeywell FEMA seine elektromechanische Baureihe um eine elektronische Lösung.

Technische Daten

Arbeitsbereich -15...+15 °C Einstellbereich 1...10 °C Genauigkeit +/-1 KSchaltdifferenz ca. 2 K

Empfindlichkeit Ruhende Luft

ca. 90 sec **Bewegte Luft** ca. 45 sec

Abkühlung der Fühlerleitung Mindestlänge 250 mm

Gewicht und Fühlerlänge

FTSE20 2m, 0,34 kg FTSE60 6m, 0,41 kg

Elektrischer Anschluss Klemmen mit Zuafedertechnik

Querschnitt max. 2,5 mm² Min. 0,25 mm²

Vers. Spannung 24 V AC, +10/-20 % Frequenz 48-63 Hz Leistungsaufnahme 6.6 VA

Analogeingang

DC 0-10 V, max. 0,1 A Signal Max. Leitungslänge 300 mtr. bei 1,5 mm²

Analogausgang Fühlertemperatur

10-0 V @ 0-10 °C DC 0-10 V Steuerung max. 1 mA Strom Max. Leitungslänge 300 m bei 1,5 mm²

Relaisausgang Min. Schaltleistung

AC/DC 12V, 100 mA AC 230V, 6(2)A Max. Schaltleistung DC 24V, 6A

Betriebstemperatur Klimaklasse **Temperatur** Feuchte

nach IEC721-3-3 3K5 -15...+55 °C < 85 % r. F.

Lagertemperatur Klimaklasse Temperatur Feuchte

nach IEC721-3-2 2K3 -25...+65 °C < 95 % r. F.

EMV Störaussendung Störfestigkeit

LVD

Klasse B (EN61326-1) Industrie (EN61326-1) 2004/108/EG 2006/95/EG

Schwingung DIN EN 60712-3-3

Klasse 3M2

Werkstoffe/Farben Gehäusedeckel Gehäuseunterteil

Abdeckkappe

Fühlerleitung

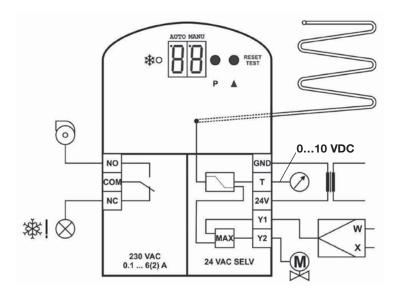
Verpackung

PC, transparent PA, silbergrau RAL7001 ABS, lichtgrau RAL7035 Kupfer . Wellkarton

Funktion

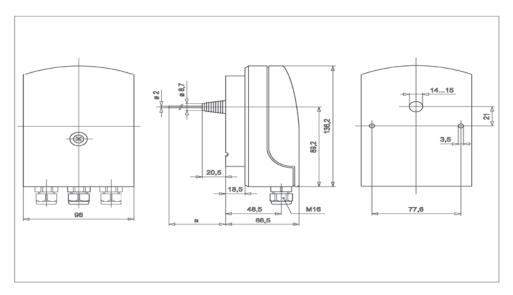
Eine spezielle Anfahrfunktion, die integrierte Gehäusekopfheizung und die besonders einfache Bedienung zeichnen das neue Produkt aus. Bei Abkühlung des Kapillarfühlers an beliebiger Stelle unter die eingestellte Schalttemperatur schaltet der Thermostat selbstständig ab. Alternativ sind sowohl die Funktion als Wächter, als auch als Begrenzer (mit manuellem Reset) einstellbar. Der eingebaute Relaiskontakt ermöglicht ein direktes Schalten von Lasten bis AC 250 V 6(2)A. Der über den Fühler gemessene Temperaturbereich von 10-0 °C wird als Messignal von 0-10 V am Ausgang ausgegeben. Hier angeschlossen ist ein kontinuierliches Öffnen von Heizventilen oder Lüftungsklappen realisierbar.

Zusätzlich kann über den 0-10 V Eingang eine Steuerspannung auf den 0-10 V Ausgang durchgeschleusst werden. Ab dem Unterschreiten einer kundenseitig voreingestellten Temperaturschwelle übernimmt der FTSE die Priorität und schließt angeschlossene Ventile oder Klappen kontinuierlich bis zum endgültig eingestellten Abschaltpunkt, unabhängig der anliegenden Eingangsspannung.


Desweiteren kann die aktuell gemessene Temperatur zur Weiterverarbeitung, zum Beispiel durch eine externe Temperaturanzeige, als Ausgangssignal aufgenommen werden. Der FTSE ist serienmäßig mit einer Gehäusekopfheizung ausgestattet. Diese hält die Kopftemperatur bis zu einer Temperatur von -15 °C auf +15 °C und garantiert somit die Funktionsweise auch bei tiefen Temperaturen. Um während des Anfahrens einer Anlage ein mehrmaliges Ein- und Ausschalten zu verhindern, verfügt der FTSE über eine Anfahrfunktion. Diese stellt sicher, dass zunächst das Heizventil vollständig über den 0 bis 10 V Ausgang geöffnet wird, bevor ein Schalten des Relaiskontaktes die Gesamtanlage außer Betrieb nimmt.

Sämtliche Einstellungen des Thermostaten können nach Lösen einer kleinen Verschlussschraube von außen mit Hilfe zweier Taster durchgeführt werden. Eine Trennung der Spannungsversorgung ist nicht nötig. Wählbar sind beim FTSE der Schaltpunkt sowie die Betriebsart. Der Schaltpunkt kann zwischen 1 und 10 °C eingestellt werden. Es besteht die Auswahl zwischen einem Betrieb ohne Wiedereinschaltsperre und einem Betrieb mit Wiedereinschaltsperre. Wird die Betriebsart mit Wiedereinschaltsperre gewählt, so ist nach Erreichen des eingestellten Schaltpunktes der Thermostat so lange verriegelt, bis eine manuelle Rückstellung über einen Taster erfolgt. Die Rückstellung kann jedoch erst nach Abkühlung um die Schaltdifferenz von circa zwei Kelvin erfolgen. Eine Rückstellung ist auch durch Trennung des Gerätes von der Versorgungsspannung möglich.

Typenübersicht


Туре	Kapillarlänge	IP
FTSE20	2 m	42
FTSE60	6 m	42

Elektrischer Anschluss

SELV: Self Extra Low Voltage (Sicherheitskleinspannung)

Maßzeichung (Angaben in mm)

Zubehör

Im Lieferumfang enthalten:

Halteklammern für Kapillare 6 Stück bei FTSE60

3 Stück bei FTSE20

Kabeleinführung 2 Stück M 16x1,5

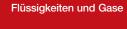
Schrauben für Direktmontage 2 Stück

Schutztülle für Kapillare 1 Stück

Optional erhältlich:

1 Montageflansch Polyamid verstärkt

Flüssigkeiten und Gase



TAM

Kapillarrohrthermostate mit 1,5 m Kapillarrohr

Die Fühlerpatrone am Ende des Kapillarrohrs ist der eigentliche aktive (temperaturempfindliche) Teil des Fühlers. Temperaturänderungen am Kapillarrohr haben keinen Einfluss auf den Schaltpunkt. Mit Hilfe einer Tauchhülse ist der druckdichte Einbau des Fühlers in Druckbehälter aller Art möglich.

TX

Stabthermostate (ohne Tauchhülse)

Stabthermostate eignen sich zum direkten Einbau in Behälter, Rohrleitungen und Luftkanäle. Die Tauchhülsen können vorab montiert werden. Auswahl der Tauchhülsen R... nach Tabelle Seite 150.

Flüssigkeiten und Gase

STW/STB

Anlegethermostate

Selbstüberwachender Thermostat als Sicherheitstemperaturwächter und -begrenzer z. B. für den Einsatz in Fußbodenheizungen

Bei Bruch oder Beschädigung des Fühlers verhält sich der Anlegethermostat so, als ob die Temperatur den Einstellwert überschritten hätte. Er schaltet nach der sicheren Seite ab (z. B. Umwälzpumpe aus). Wichtig für eine sichere Funktion ist eine gründliche Reinigung der Rohroberfläche von Schmutz, Rost, Zunder und anhaftender Farbe. Jedem Thermostat ist ein Spannband beigefügt, das den Anbau an Rohre bis zu 100 mm Durchmesser zulässt. Zudem kann der Thermostat über eine Kapillare an der Wand befestigt werden. Eine optionale Tauchhülse erlaubt die Verwendung als Tauchthermostat. Hier zeigt sich die enorme Vielseitigkeit, welche sich ebenfalls in der geringen Lagerhaltung beim Kunden widerspiegelt. Zu den Neuerungen gehören u. a. eine automatische Temperaturkompensation, sowie die Push-In® Klemmentechnik. Die Geräte sind CE- zugelassen, sowie geprüft nach DIN EN 14597.

→ S. 116

Prüfung nach
DG-Richtlinie 2014/68/EU

STB/STW

Temperaturwächter, Temperaturbegrenzer, bauteilgeprüft

Die Temperaturwächter und Temperaturbegrenzer sind geprüft nach Druckgeräterichtlinie 2014/68/EU, entsprechen den Anforderungen der DIN EN 14597 und sind damit für Heizungsanlagen nach DIN EN12828, für Dampf- und Heißwasseranlagen und für Fernheizungen einsetzbar. Die Geräte mit Sicherheitsfunktion (STW, STB) sind selbstüberwachend, d. h. bei Bruch oder bei Undichtigkeit im Messsystem wird der Stromkreis geöffnet und die Anlage nach der sicheren Seite abgeschaltet.

→ S. 118

TAM

Kapillarrohrthermostate mit 1,5 m Kapillarrohr

Die Fühlerpatrone am Ende des Kapillarrohrs ist der eigentliche aktive (temperaturempfindliche) Teil des Fühlers. Temperaturänderungen am Kapillarrohr haben keinen Einfluss auf den Schaltpunkt. Mit Hilfe einer Tauchhülse ist der druckdichte Einbau des Fühlers in Druckbehälter aller Art möglich.

SIL 2 gemäß IEC 61508-2

Technische Daten

Gehäuse

Druckguss GD Al Si 12 nach DIN 1725.

Einbaulage

Kapillarrohr

Beliebig, vorzugsweise senkrecht

Max. Umgebungstemperatur am Schaltgerät

+70 °C

Cu-Kapillarrohr,

1,5 m lang Andere Kapillarrohrlängen sind nicht möglich

Fühlerpatrone 8 mm Ø, 100 mm lang,

Werkstoff: Cu

Kontaktbestückung Einpoliger Umschalter

Schaltleistung 8 (5) A 250 V AC

Schutzart IP 54 nach DIN EN60529

(bei senkrechtem Einbau)

Justierung Skalenwert entspricht dem unteren Schaltpunkt

(bei fallender Temperatur), der obere Schaltpunkt ist um die Schaltdifferenz

höher

Steckanschluss Durch Winkelstecker nach

DIN EN175301

Schalttemperatur Mittels Schraubendreher

an Stellspindel einstellbar

Schaltdifferenz Nicht einstellbar

oder Behä

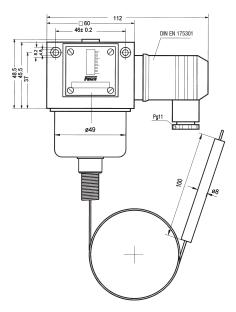
Montage

Temperaturfühler mit oder ohne Tauchhülse in Behälter, Luftkanäle usw. Schaltgerät mit 2 Schrauben (Ø 4) direkt an ebene Wandfläche

Weitere wichtige Hinweise siehe Bedienungsanleitung.

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässige Temperatur	
TAM022	–20 bis + 20 °C	0,8 2,5 K	110 °C	
TAM150	+10 bis + 50 °C	0,8 2,5 K	110 °C	
TAM490	+40 bis + 90 °C	1 4 K	125 °C	
TAM813	+80 bis +130 °C	2 8 K	150 °C	


* 2,5 K im Bereich: 90 - 130 °C, 6 K im Bereich: 80 - 90 °C

(Ex)-TAM siehe Seite 121

Zubehör

Tauchhülse Type R1/MS, R2/MS, R1/NST, R2/NST, RN1/MS, RN2/MS,RN1/NST, RN2/NST s. Seite 148.

Abmessungen (Angaben in mm)

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

TX

Stabthermostate

Die Stabthermostate können als Tauchthermostate für druckdichten Einbau in Rohrleitungen und Behälter und für die Temperaturüberwachung in Luftkanälen eingesetzt werden. Für den jeweiligen Anwendungsfall ist die passende Tauchhülse auszuwählen und als separate Position zu bestellen.

SIL 2 gemäß IEC 61508-2

Technische Daten

Gehäuse Druckguss GD Al Si 12

nach DIN 1725.

Einbaulage Beliebig, vorzugsweise senkrecht

70.00

Max. Umgebungs- +70 °C temperatur am Schaltgerät

Max. zul. Temperatur am Fühler Siehe Typenübersicht

Kontaktbestückung Einpoliger Umschalter

Schaltleistung 8 (5) A 250 V AC

Schutzart IP 54 nach DIN EN60529

(bei senkrechtem Einbau)

Justierung Skalenwert entspricht

dem unteren Schaltpunkt (bei fallender Temperatur), der obere Schaltpunkt ist um die Schaltdifferenz

höher

Steckanschluss Durch Winkelstecker

nach DIN EN175301 (3-polig + Schutzkontakt), Kabeleinführung Pg 11, max. Kabeldurchmesser 10 mm, Kabelausgang in 4 Richtungen – jeweils um 90 °C versetzt möglich. Stecker wird

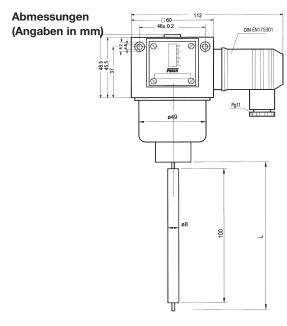
mitgeliefert.

Schalttemperatur

Von außen mittels Schraubendreher

einstellbar

Schaltdifferenz Nicht einstellbar


Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässige Temperatur am Fühler	
Tauchtie	fe L = 135 mm			
TX023	-20 bis + 30 °C	0,8 2,5 K	110 °C	
TX150	+10 bis + 50 °C	0,8 2,5 K	110 °C	
TX490	+40 bis + 90 °C	0,7 3,5 K	125 °C	
Tauchtie	fe L = 220 mm			
TXB023	-20 bis + 30 °C	0,8 2,5 K	110 °C	
TXB150	+10 bis + 50 °C	0,8 2,5 K	110 °C	
TXB490	+40 bis + 90 °C	0,7 3,5 K	125 °C	

Ex-TX siehe Seite 120

Zubehör

Tauchhülse Type R10/MS, R20/MS, R10/NST, R20/NST, RN10/MS, RN20/MS, RN10/NST, RN20/NST, R6, R7 s. Seite 148.

Hinweis auf nicht angelegte Artikel:

In unserem Artikelstamm sind nicht alle technisch möglichen Gerätekombinationen angelegt. Deshalb empfehlen wir die vorherige Anfrage zur Klärung und Auswahl einer möglichen Alternativlösung.

STW / STB

Anlegethermostate

Selbstüberwachender Thermostat als Sicherheitstemperaturwächter und -begrenzer z. B. für den Einsatz in Fußbodenheizungen

Bei Bruch oder Beschädigung des Fühlers verhält sich der Anlegethermostat so, als ob die Temperatur den Einstellwert überschritten hätte. Er schaltet nach der sicheren Seite ab (z. B. Umwälzpumpe aus). Wichtig für eine sichere Funktion ist eine gründliche Reinigung der Rohroberfläche von Schmutz, Rost, Zunder und anhaftender Farbe. Jedem Thermostat ist ein Spannband beigefügt, das den Anbau an Rohre bis zu 100 mm Durchmesser zulässt. Zudem kann der Thermostat über eine Kapillare an der

Wand befestigt werden. Eine optionale Tauchhülse erlaubt die Verwendung als Tauchthermostat. Hier zeigt sich die enorme Vielseitigkeit, welche sich ebenfalls in der geringen Lagerhaltung beim Kunden widerspiegelt. Zu den Neuerungen gehören u. a. eine automatische Temperaturkompensation, sowie die Push-In® Klemmentechnik. Die Geräte sind CE zugelassen, sowie im Sinne der Druckgeräterichtlinie geprüft nach DIN EN 14597.

Technische Daten

Schaltpunktgenauigkeit

STW/STB2080 STW/STB70130 Schaltpunktabweichung

0/-8K 0/-12K Max. 5% auf Lebensdauer

Temperaturgrenze

Lagertemperatur Betriebstemperatur Max. zul. Mediumstemperatur

-30/+80 °C -30/+80 °C 10K über der max. Einstelltemperatur

Elektrische Daten

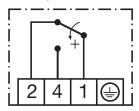
Max. Schaltleistung Min. Schaltleistung El. Anschluss

Anschlussauerschnitt Kabeleinführung Schutzart

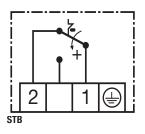
Mechanische Daten

Gehäuseunterteil Gehäusedeckel Sichtscheibe Rohrmontage Einbaulage

Fühlerpatrone


Fernleitung Gewicht Zulassungen

16 (2,5) A / 230V 100mA / 24VACDC Push-In ® Steckkontakt 0.75-2.5 mm² M 20 x 1,5 (6-12 mm) IP 54 nach EN 60529


PA-verstärkt ABS PMMA Bis 100 mm NL0...90, gem.

DIN 16257 ø 6 mm, 45 mm lang, Werkstoff: Cu Kupfer, 2 Meter 200 q DIN, DGR, CE,

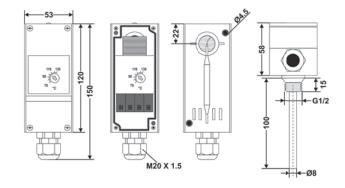
Anschlusspläne

STW

Туре	Temperatur- bereich	Einsatz als	Schalt- differenz	Rückstellung
STW2080	20-80 °C	Wächter	10 K	automatisch
STB2080	20-80 °C	Begrenzer	10 K	manuell
STW70130	70-130 °C	Wächter	10 K	automatisch
STB70130	70-130 °C	Begrenzer	10 K	manuell

Sicherheitstemperaturwächter STW2080 und STW70130

Überschreitet die anstehende Temperatur am Temperaturfühler den eingestellten Grenzwert, wird der Sprungschalter betätigt und der Stromkreis geöffnet bzw. geschlossen. Beim Unterschreiten des eingestellten Sollwerts (um die Schaltdifferenz von ca. 10 K) wird der Sprungschalter wieder in Ausgangsstellung gebracht. Bei Zerstörung des Messsystems, d. h. wenn die Ausdehnungsflüssigkeit entweicht, fällt der Druck in der Membrane ab und öffnet bleibend den Stromkreis. Bei Abkühlung des Fühlers auf eine Temperatur unter ca. -20 °C öffnet sich der gleiche Stromkreis, schließt sich jedoch bei Temperaturanstieg wieder selbsttätig.


Sicherheitstemperaturbegrenzer STB2080 und STB70130

Überschreitet die anstehende Temperatur am Temperaturfühler den eingestellten Grenzwert, wird der Sprungschalter betätigt, der Stromkreis geöffnet bzw. geschlossen und der Sprungschalter mechanisch verriegelt. Nach Unterschreitung der Grenzwerttemperatur um 10 K, kann der Sprungschalter wieder manuell entriegelt werden. Bei Zerstörung des Messsystems, d. h. wenn die Ausdehnungsflüssigkeit entweicht, fällt der Druck in der Membrane ab und öffnet bleibend den Stromkreis. Eine Entriegelung ist nicht mehr möglich. Bei Abkühlung des Fühlers auf eine Temperatur unter ca. -20 °C öffnet sich der Stromkreis, schließt sich jedoch bei Temperaturanstieg wieder selbsttätig.

Туре	Tauchhülse max. zul. Druck: 40 bar
STG12-100	G 1/2", 100 mm, ø 8 mm, Ms, vernickelt

Abmessungen (Angaben in mm)

CE

STB

Temperaturwächter, Temperaturbegrenzer, bauteilgeprüft

Die Temperaturwächter und Temperaturbegrenzer sind geprüft nach Druckgeräterichtline 2014/68/EU, entsprechen den Anforderungen der DIN EN 14597 und sind damit für Heizungsanlagen nach DIN EN12828, für Dampf- und Heißwasseranlagen und für

Fernheizungen einsetzbar. Die Geräte mit Sicherheitsfunktion (STW, STB) sind selbstüberwachend, d. h. bei Bruch oder bei Undichtigkeit im Messsystem wird der Stromkreis geöffnet und die Anlage nach der sicheren Seite abgeschaltet.

Technische Daten

Gehäuse

Aluminium-Druckguss mit Kunststoffdeckel.

Fühler

ø 6 mm

Tauchhülse

Messing, G 1/2", ø 8 mm, im Lieferumfang enthalten Edelstahl, G 1/2" gesondert zu bestellen. Type T4NSTF siehe Typenübersicht

Max. Umgebungstemperatur

+80 °C am Schaltknopf

Schaltpunktgenauigkeit

(im oberen Drittel der Skala) bei STW, STB:

± 5%

(Angaben in % vom Skalenbereich)

Schaltdifferenz

(in % vom Skalenbereich bei STW, STB: 4-6%

Plombierung

Der Deckel des Schaltgeräts ist plombierbar, damit sind die inneren Einstellungen der Begrenzerschaltpunkte nach der Plombierung nicht mehr zugänglich.

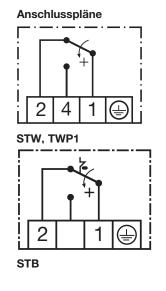
Schaltleistung

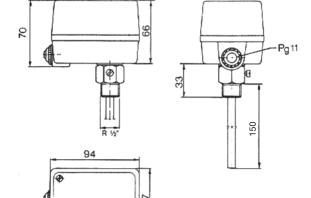
10 (2) A, 250 V AC

Schutzart

IP 54

Туре	STW1	TWP1	STB1
Funktion	Sicherheits- emperaturwächter	Temperatur- wächter	Sicherheitstem- peraturbegrenzer
Einstellbereich	20 bis 150 °C	20 bis 150 °C	60 bis 130 °C
Einstellung	innen	innen	innen
Bedienelemente von außen zugänglich	Keine	Keine	Wiederein- schaltknopf
Kontakt	Umschalter	Umschalter	Öffner
Wiedereinschaltsperre (intern)	nein	nein	ja
Max. Temperatur am Fühler	175 °C	175 °C	150 °C
Eintauchtiefe	150 mm	100 mm	150 mm
Zul. Druck Messingtauchhülse	40 bar	40 bar	40 bar
Zul. Druck Edelstahltauchhülse	80 bar, T4NST	80 bar, T4NST (150 mm)	80 bar, T4NST


Tauchhülse, Edelstahl 1.4571, G1/2", ø 8 mm


Temperaturwächter, -begrenzer	Tauchtiefe	Тур	
STW1, TWP1 STB1	150 mm	T4NST	

Abmessungen (Angaben in mm)

FEMIA

STB/STW

Temperaturwächter, Temperaturbegrenzer, bauteilgeprüft

Die Temperaturwächter und Temperaturbegrenzer sind geprüft nach Druckgeräterichtline 2014/68/EU, entsprechen den Anforderungen der DIN EN 14597 und sind damit für Heizungsan-lagen nach DIN EN12828, für Dampf- und Heißwasseranlagen und für Fernheizungen einsetzbar.

Die Geräte mit Sicherheitsfunktion (STW, STB) sind selbstüberwachend, d. h. bei Bruch oder bei Undichtigkeit im Messsystem wird der Stromkreis geöffnet und die Anlage nach der sicheren Seite abgeschaltet.

Technische Daten

Gehäuse

Aluminium-Druckguss mit Kunststoffdeckel.

Fühler

2 Fühler, je ø 6 mm, zusammengeführt im Tauchrohr ø 15 mm

Tauchhülse

Messing, G 1/2", ø 15 mm im Lieferumfang enthalten

Edelstahl, G 1/2" gesondert zu bestellen. Type T5NST siehe Typenübersicht

Max. Umgebungs- +80 °C temperatur

am Schaltknopf

Schaltpunktgenauigkeit

(im oberen Drittel der Skala) bei TW, STW, STB:

± 5% bei TR: ± 1,5 % (Angaben in % vom Skalenbereich)

Schaltdifferenz

(in % vom Skalenbereich bei TR, TW: 3-4% bei STW, STB: 4-6%

Plombierung

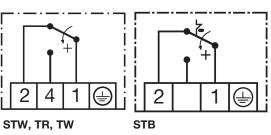
Der Deckel des Schaltgeräts ist plombierbar, damit sind die inneren Finstellungen der Begrenzerschaltpunkte nach der Plombierung nicht mehr zugänglich.

Schaltleistung

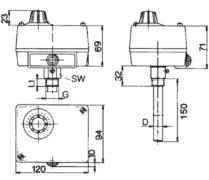
10 (2) A, 250 V AC

Schutzart

IP 54


Туре	STW+TR	STB+TW	STB+TR
Funktion	Sicherheitstemperatur- wächter und Regler	Sicherheitstemperatur- begrenzer und Wächter	Sicherheitstemperatur- begrenzer und Wächter
Einstellbereich	20 bis 150 °C	30 bis 110 °C	30 bis 110 °C
Einstellung	STW innen TR außen	STB innen TW innen	STB innen TR außen
Bedienelemente von außen zugänglich	Einstellrad für TR	Wiedereinschaltknopf	Wiedereinschaltknopf und Einstellrad für TR
Kontakt	2 x Umschalter	Öffner (STB) und Umschalter (TW)	Öffner (STB) und Umschalter (TR)
Wiedereinschalt- sperre (intern)	nein	ja	ja
Max. Temperatur am Fühler	175 °C	130 °C	130 °C
Eintauchtiefe	150 mm	150 mm	150 mm
Zul. Druck Messing- tauchhülse	25 bar	25 bar	25 bar
Zul. Druck Edelstahl- tauchhülse	40 bar T5NST	40 bar T5NST	40 bar T5NST

Tauchhülse, Edelstahl 1.4571, G1/2", Ø 15 mm


Temperaturwächter -begrenzer	Tauchtiefe	Тур
STB+TW STB+TR STW+TR	150 mm	T5NST

Anschlusspläne:

Bei Geräten mit Doppelfunktion sind 2 Schaltelemente vorhanden. Beim Anschluss ist die Funktion des jeweiligen Schalters zu beachten.

STW+TR

STB+TR

Temperaturüberwachung

in explosionsgefährdeten Bereichen

Ex-Thermostate mit spezieller Ausstattung können auch in Ex-Bereichen der Zonen 1 und 2, sowie 21 und 22 eingesetzt werden.

Folgende Alternativen sind möglich:

1. Zündschutzart Ex-d, Ex-e und Ex-t:

Der Thermostat in Zündschutzart "Druckfeste Kapselung Ex-d, Erhöhte Sicherheit Ex-e und Schutz durch Gehäuse Ex-t" kann direkt im Ex-Bereich, in den Zonen 1 und 2, sowie 21 und 22 eingesetzt werden.

Die zulässigen Werte für Schaltspannung, Schaltleistung und Umgebungstemperatur entnehmen Sie bitte der näheren Beschreibung der Ex-Geräte, sowie der Montage- und Bedienungsanleitung. Darüber hinaus gelten die allgemeinen Regeln für den Einsatz und die Installation von Geräten in Ex-Atmosphäre.

Sonderschaltungen, sowie Ausführungen mit einstellbarer Schaltdifferenz oder interne Verriegelung (Wiedereinschaltsperre) sind nicht möglich.

2. Zündschutzart Ex-i

Alle Thermostate mit Ausstattung für eigensichere Stromkreise können in Ex-Bereiche der Zonen 1 und 2 (Gas), sowie 21 und 22 (Staub) eingesetzt werden. Ein Stromkreis gilt als "eigensicher", wenn die darin geführte Energiemenge nicht in der Lage ist, einen zündfähigen Funken zu erzeugen. Dazu dürfen Thermostate nur in Kombination mit passenden Trennschaltverstärkern betrieben werden, welche für die Zündschutzart Ex-i zugelassen sind. Wegen der geringen Spannungen und Ströme in eigensicheren Stromkreisen werden für Thermostate Mikroschalter sind gekennzeichnet durch blaue Anschlussklemmen und Kabeleinführungen. Darüber hinaus wurden die Thermostate durch eine "benannte Stelle" zugelassen. Alle Geräte sind seriennummeriert und das Typenschild informiert über die Zündschutzart und Registriernummer.

mit Goldkontakten eingesetzt. FEMA Thermostate für den Einsatz in eigensicheren Stromkreisen

Zündschutzarten für Thermostate in den Zonen 1 (21) und 2 (22)

Druckfeste Kapselung Ex-d (EN60079-0:2009) Erhöhte Sicherheit Ex-e (EN60079-7:2007) Schutz durch Gehäuse Ex-t (EN60079-31:2009) T...-513, ...-563 Ex-T...

Eigensicherheit Ex-i (EN 60079-11:2012)

Kennzeichnung mit Einbau in Tauchhülse: **C€** 0035 **(E)** II 2**G** Ex d e IIC T6 Gb C€ 0035 () II 1/2D Ex ta/tb IIIC T80°C Da/Db Ausnahme: EX-TRM...:

Kennzeichnung: **C**€ 0035 🖾 II 2G Ex ia IIC T6 Gb C€ 0035 ⟨EX |I 2D Ex ia IIIC T80°C Db

C€ 0035 ⟨Ex⟩ || 2G Ex d e || C T6 Gb (€ 0035 ⟨€x⟩ || 2D Ex tb |||C T80°C Db

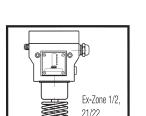
Ex-Zulassung für das Schaltgerät

Ex-Zulassung für Schaltgerät Ex- Zulassung für Trennschaltverstärker

Ausstattung mit Silberkontakten

Ausstattung mit Goldkontakten (Wächter)

Bemessungswerte: max. 3A, 250VAC min. 2mA, 24VDC


Bemessungswerte ohne Widerstandskombination ...-513 /...-563: Ui: 24VDC

li: 100mA Ci: 1nF Li: 100µH

Thermostat wird innerhalb der Ex-Zone installiert

Thermostat wird innerhalb der Ex-Zone installiert, der Trennschaltverstärker wird außerhalb der Ex-Zone installiert.

Ex-Zone 1/2.

21/22

Ex-TX

Ex-Schutzart mit Tauchhülse:

(Ex) II 2G Ex d e IIC T6 Gb

(II 1/2D Ex ta/tb IIIC T80 °C Da/Db

Stabthermostate eignen sich zum direkten Einbau in Behälter, Rohrleitungen und Luftkanäle. Die Tauchhülsen können vorab montiert werden.

Technische Daten

Gehäuse Druckguss GD Al Si 12 nach DIN 1725.

Einbaulage Senkrecht mit Schaltgerät nach oben

Umgebungstemperatur am Schaltgerät

-20 bis +60 °C

Max. zul. Temperatur am Fühler

Siehe Typenübersicht

Kontaktbestückung Einpoliger Umschalter

Schaltleistung 8 (5) A 250 V AC

Schutzart IP 65 nach DIN EN60529

(bei senkrechtem Einbau)

Justierung Skalenwert entspricht

dem unteren Schaltpunkt (bei fallender Temperatur), der obere Schaltpunkt ist um die Schaltdifferenz

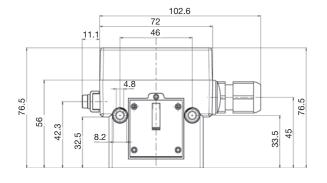
höher

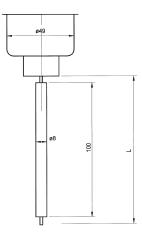
Schalttemperatur Von außen mittels

Schraubendreher einstellbar

Schaltdifferenz Nicht einstellbar

Typenübersicht


Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässige Temperatur	
Tauchtiefe L =	135 mm			
Ex-TX023	-20 bis + 30 °C	0,5 1,0 K	110 °C	
Ex-TX150	+10 bis + 50 °C	0,4 1,5 K	110 °C	
Ex-TX490	+40 bis + 90 °C	0,2 3,0 K	125 °C	
Tauchtiefe L =	220 mm			
Ex-TXB023	-20 bis + 30 °C	0,5 1,0 K	110 °C	
Ex-TXB150	+10 bis + 50 °C	0,4 1,5 K	110 °C	
Ex-TXB490	+40 bis + 90 °C	0,2 3,0 K	125 °C	


🛨 Zubehör

Tauchhülse Type R10/MS, R20/MS, R10/NST, R20/NST, RN10/MS, RN20/MS, RN10/NST, RN20/NST, R6, R7 s. Seite 148.

Maßzeichnung (Angaben in mm)

Gehäuse 700 (Klemmenanschluss, Ex-d)

Temperatursensor

Schaltgehäuse

Ex-TAM

Ex-Schutzart mit Tauchhülse:

(Ex) II 2G Ex d e IIC T6 Gb

II 1/2D Ex ta/tb IIIC T80 °C Da/Db

Die Fühlerpatrone am Ende des Kapillarrohrs ist der eigentliche aktive (temperaturempfindliche) Teil des Fühlers. Temperaturänderungen am Kapillarrohr haben keinen Einfluss auf den

Schaltpunkt. Mit Hilfe einer Tauchhülse ist der druckdichte Einbau des Fühlers in Druckbehälter aller Art möglich.

SIL 2 gemäß IEC 61508-2

Technische Daten

Gehäuse Druckguss GD Al Si 12 nach DIN 1725.

Einbaulage Senkrecht mit

Schaltgerät nach oben

Umgebungstemperatur am Schaltgerät –20 bis +60 °C

Kapillarrohr Cu-Kapillarrohr, 1,5 m lang

Andere Kapillarrohrlängen sind nicht möglich

Fühlerpatrone 8 mm ø, 100 mm lang,

Werkstoff: Cu

Kontaktbestückung Einpoliger Umschalter

Schaltleistung 8 (5) A 250 V AC

Schutzart IP 65 nach DIN EN60529

(bei senkrechtem Einbau)

Justierung Skalenwert entspricht

dem unteren Schaltpunkt (bei fallender Temperatur), der obere Schaltpunkt ist um die Schaltdifferenz

höher

Schalttemperatur Mittels Schraubendreher

an Stellspindel einstellbar

Schaltdifferenz Nicht einstellbar

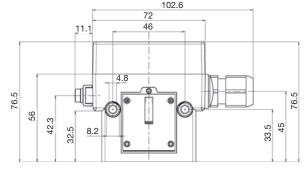
Montage Temperaturfühler mit oder ohne Tauchhülse in

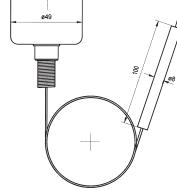
Behälter, Luftkanäle usw. Schaltgerät mit 2 Schrauben (ø 4) direkt an ebene Wandfläche

Weitere wichtige Hinweise siehe Bedienungsanleitung.

Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)	Max. zulässige Temperatur am Fühler	
Ex-TAM022	-20 bis + 20 °C	0,2 2,0 K	110 °C	
Ex-TAM150	+10 bis + 50 °C	0,8 2,5 K	110 °C	
Ex-TAM490	+40 bis + 90 °C	1,0 4,0 K	125 °C	
Ex-TAM813	+80 bis +130 °C	2,0 8,0 K*	150 °C	


^{* 2,5} K im Bereich: 90 – 130 °C, 8 K im Bereich: 80 – 90 °C


Zubehör

Tauchhülse Type R1/MS, R2/MS, R1/NST, R2/NST, RN1/MS, RN2/MS, RN1/NST s. Seite 148.

Maßzeichnung (Angaben in mm)

Gehäuse 700 (Klemmenanschluss, Ex-d)

Schaltgehäuse

Temperatursensor

Ex-TRM

(Ex) II 2G Ex d e IIC T6 Gb

(II 2D Ex th IIIC T80 °C Db

FEMA-Raumthermostate eignen sich für industrielle Anlagen, für Gewächshäuser, Viehställe und Lagerhallen sowie zur Überwachung der maximalen Temperatur

in Schaltschränken und Relaisstationen. Raumthermostate werden einschließlich Wandbefestigung H1 geliefert.

SIL 2 gemäß IEC 61508-2

Technische Daten

Gehäuse Druckguss GD Al Si 12

nach DIN 1725. Beständig gegen ammoniakhaltige Dämpfe und gegen Seewasser

Einbaulage Senkrecht mit

Schaltgerät nach oben

Umgebungstemperatur –20 bis +60 °C

Max. Temperatur

am Fühler

60 °C

Kontaktbestückung Einpoliger Umschalter

Schaltleistung 8 (5) A 250 V AC

Schutzart IP 65 nach DIN EN60529

(bei senkrechtem Einbau)

Montage Mit Befestigungswinkel

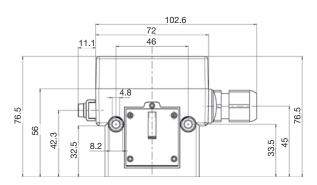
H 1 oder mit 2 Schrauben (Ø 4) direkt an der Wandfläche

Justierung Skalenwert entspricht

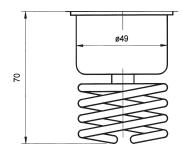
dem unteren Schaltpunkt (bei fallender Temperatur), der obere Schaltpunkt ist um die Schaltdifferenz

höher

Schalttemperatur Von außen mittels


Schraubendreher einstellbar

Schaltdifferenz nicht einstellbar


Typenübersicht

Туре	Einstellbereich	Schaltdifferenz (Toleranzspanne)			
Schaltdifferenz nicht einstellbar					
Ex-TRM022	−20 bis +20 °C	0,8 2,5 K			
Ex-TRM40	0 bis +40 °C	3,5 7 K			
Ex-TRM150	+10 bis +50 °C	3,5 7 K			

Maßzeichnung (Angaben in mm)

Schaltgehäuse

Temperatursensor

Schutzart:

Druckschalter

Drucktransmitter

Thermostate

Temperatursensoren

-20 °C...+60 °C

-35 °C...+80 °C

nicht kondensierend

0,5 % vom Endwert

0...95 %

tvpabhängig

M8 nach DIN IEC 60947-5-2

Smart Temp TST-R

Elektronischer Thermostat + Temperaturtransmitter

Der elektronische Thermostat Smart Temp wird überall dort eingesetzt, wo spezielle Überwachungsaufgaben, gepaart mit Schaltfunktionen, notwendig werden. Idealerweise kann das Gerät zur zweistufigen Temperaturregelung eingesetzt werden. Damit eignet sich Smart Temp optimal zur Temperatursteuerung im Maschinen- und Anlagenbau, der Fluidik, der Verfahrenstechnik und der Pneumatik, sowie zur Überwachung und Steuerung von Heizsystemen,

Klimaschränken, Öfen und Garsystemen. Dank der kontinuierlich ausbaufähigen Sensorik kommen zu den genannten Anwendungen ständig neue Möglichkeiten hinzu. In der Ausführung TST...-R können Schaltsignale potentialfrei über einen Relaiskontakt ausgegeben werden. Ein komfortabler und konfigurierbarer Analogausgang hilft, kritische Prozesstemperaturen an Messund Regelsysteme weiterzuleiten.

Technische Daten

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Umgebungstemperatur Lagertemperatur Relative

Luftfeuchtigkeit Gesamtgenauigkeit Gewicht

Gewicht typabhängig Mediumberührte Teile 1.4571 bei Anbausensoren

Prozessanschlüsse bei externen Sensoren Standardanbausensor: G 1/2" Außengewinde

Elektrische Anschlüsse

5-poliger M 12-Stecker gem. DIN IEC 60947-5-2 (als Zubehör) Zusätzlicher 3-poliger M12 Stecker gemäß DIN EN 50044 (als Zubehör) PT 1000 Klasse A

Sensoranschluss extern:

Sensorelement ausgewertet Schutzklasse Schutzart Klimaklasse Spannungsversorgung Ausgänge

II gemäß EN 60335-1 IP 65 gemäß EN 60529 C gemäß DIN EN 60654 14...36 VDC

2 Open-Collector Ausgänge 250 mA bei 16...36 VDC High/Low Side schaltend und als Push/Pull Ausgänge konfigurierbar Schaltdifferenz (SP und RP) per Software wählbar

Relaisausgänge

Zulässige ohmsche Last: 250 VAC, 5 A Zulässige induktive Last: 250 VAC, 0,8 A (200 VA) Kontaktart: 1 Wechselkontakt (1 x U M) Maximale Lebensdauer: 100.000 Schaltzyklen Ausgangskonfiguration: Warnausgang auf Stecker 2 max. 20 mA, 14...36 VDC

Transmitterausgang

Warnausgang

Spannung/Strom 0–10 V und 4...20 mA, konfigurierbar im Expertenmodus

Gehäuse und Deckel Polybutylenterephthalat

Polybutylenterephthalat PBT-GF30, chemikalienund spannungsrissbeständig

Displayglas Polykarbonat PC

Mit einer **Gesamtgenauigkeit von 0,5** % vom Endwert eignet sich der elektronische Thermostat auch für Überwachungsmessungen im Laborbereich. Es stehen Geräte mit angebauten Sensoren von **-50** °C...**+200** °C, sowie von **-50** °C...**+400** °C mit externen Fühlern zur Verfügung. Sprechen Sie uns an, wenn Sie spezielle Wünsche an die Sensorik haben. Wir haben Möglichkeiten, Ihnen Ihren speziellen Sensor zu bauen.

Funktionsumfang

Konfiguration der 2 Schaltausgänge als:

- · Minimalthermostat, Maximalthermostat, Temperaturfensterüberwachung
- · Öffner oder Schließer High oder Low-Side schaltend und als Push/Pull Ausgang konfigurierbar
- · Zuordnung des Relaisausganges zu Kanal 1, 2 oder zum Warnausgang

Konfiguration des Analogausgangs:

- · 0-10 V, 4-20 mA bzw. 10-0 V und 20-0 mA
- Analogmessbereich einschränkbar auf minimal 50 % des Gesamtmessbereiches
- · Auswahl der Temperatureinheit °C und °F

Anzeigefunktionen von Smart Temp:

- · 4-stellige Digitalanzeige mit Bargraph für Temperatur, Einstellungen und gesetzte Parameter
- 2 dreifarbige LED's für den Schaltzustand der Ausgänge, Unplausibilität der Einstellungen und als WARN-Zustandsanzeige

Elektrischer Anschluss:

- 2 Stück 5-polige M12 Steckeranschlüsse für Spannungsversorgung, Schaltausgänge und Analogausgang
- · 1 Stück 3-poliger M12 Steckeranschluss für den Relaisausgang
- 1 Stück 4-poliger M8 Steckeranschluss für PT1000 Klasse A Sensoren (für alle TST... EPT-Baureihen)

Und außerdem:

- · Ein- und Ausschaltverzögerung 0-60 sec.
- · Temperatursimulationsmodus, zweistufiger Verriegelungscode, Restore-Funktion
- Warn-Funktion bei Unplausibilität der Schaltpunkte, Fühlerdefekt, Überlastung und Überhitzung des Gerätes

Elektronische Thermostate

Туре	Temperatur- bereich	Sensor- eintauch- tiefe (mm)	Sensor- bauart	
TST050G12100-R	-50 °C+50 °C	100	Anbau	
TST050G12250-R	-50 °C+50 °C	250	Anbau	
TST200G12100-R	-50 °C+200 °C	100	Anbau Halsrohr	
TST200G12250-R	-50 °C+200 °C	250	Anbau Halsrohr	
TST200EPT1K*-R	-50 °C+200 °C	n.a.	Extern mit Kabel	
TST400EPT1K*-R	-50 °C+400°C	n.a.	Extern mit Kabel	

^{*}Anbausatz für Auswerteeinheit AST1 im Lieferumfang enthalten.

Externe Sensoren

Туре	Temperatur- bereich	Sensor- eintauch- tiefe (mm)	Leitungs- länge	Kommentar
P2-TVS12-400100	-50 °C+400°C	100	2,5 m	Stecker ST8-3 beiliegend
P2-TVS12-400250	-50 °C+400°C	250	2,5 m	Stecker ST8-3 beiliegend

Steckerbedarf (gesondert zu bestellen)

- als Transmitter	1 x ST12-5-A
- als Schalter (OC)	1 x ST12-5-A
- als Transmitter + Schalter (OC)	2 x ST12-5-A

 - als Transmitter + Relais
 1 x ST12-5-A + 1 x ST12-4A

 - als Schalter (OC) + Relais
 1 x ST12-5-A + 1 x ST12-4A

 - als Transmitter + Schalter (OC) + Relais
 2 x ST12-5-A + 1 x ST12-4A

Zubehör (gesondert zu bestellen)

Kabeldose

Type

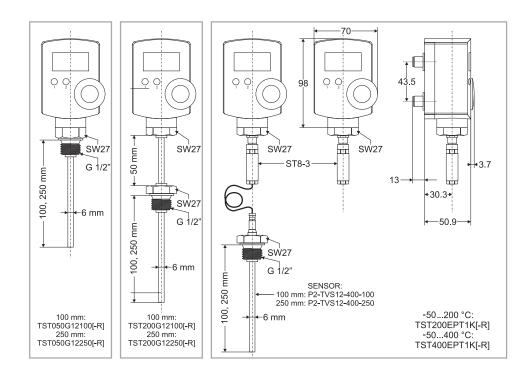
Kabeldosen sind für Anschlussquerschnitt max. 0,75 mm² einsatzfähig.

Für Ausgang 1+2

ST12-5-A 5-polig A-codiert abgewinkelte Ausführung

Für Ausgang 3 (Relaisausgang)

ST12-4-A4-poligB-codiertabgewinkelte AusführungST12-4-AK4-poligB-codiertabgewinkelte Ausführung mit 2 m KabelST12-4-GK4-poligB-codiertgerade Ausführung mit 2 m Kabel


Abdeckkappe

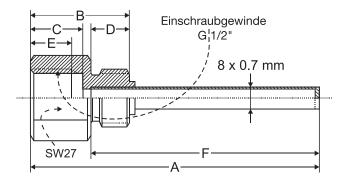
STA12 IP 65

Anschlussbelegung ST12-4-AK und ST12-4-GK

zum	Farbe	Kontaktart Gerätekontakt
1	braun	Gemeinsam
2	weiß	Öffner
3	blau	Schließer
4	grün/gelb	im Gerät nicht belegt

Tauchhülsen für Smart Temp

Typen	Einbau- länge (mm)	Werk- stoff	An- schluss	Kommentare	Max. zul. Druck (bar)
G12-100	100	1.4571/316L	G1/2"	zyl. A-Gewinde	40
G12-250	250	1.4571/316L	G1/2"	zyl. A-Gewinde	40


Einbaumaße für Smart Temp Tauchhülsen

· Schlüsselweite: SW 27

· Innengewinde für Einschraubensensor: G1/2"

· Durchmesser Tauchhülse: 8 x 0,7 mm

Тур	Α	В	С	D	E	F	Gewinde zum Prozess
G12-100	105	36	19	14	15	83	G1/2"
G12-250	255	36	19	14	15	233	G1/2"

Elektrischer Anschluss

Elektrischer Anschluss und Kontaktbelegung

Der elektrische Anschluss erfolgt über M12 Stecker auf der Rückseite des Gerätes. Je nach Version stehen 3 Anschlussstecker M12 zur Verfügung (nicht im Lieferumfang enthalten).

Kontaktbelegung an Stecker 1 (A-codiert)

Pin 1: Spannungsversorgung 14...36 V DC

Pin 2: OUT 2 (Ausgang 2) Open Collector Ausgang

Pin 3: 0 Volt (Masse)

Pin 4: OUT1 (Ausgang 1) Open Collector Ausgang
Pin 5: Serielle Schnittstelle (verriegelt für Calibration)

Besonderheit bei Open Collector Ausgängen

Konstruktiv bedingt kann die Ausgangsspannung an den Open Collector Ausgängen bis zu 2,5 V niedriger sein als die angelegte Versorgungsspannung.

Beispiel: Versorgungsspannung 14 V... Ausgangsspannung OUT1 ca. 11,5 V.

Kontaktbelegung an Stecker 2 (A-codiert)

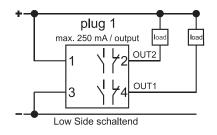
Pin 1: Spannungsversorgung 14...36 V DC Pin 2: WARN (Warnausgang max. 20 mA)

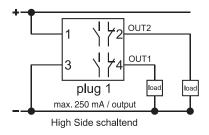
Pin 3: 0 V (Masse)

Pin 4: Analogausgang AOUT

Pin 5: Serielle Schnittstelle (verriegelt für Kalibration)

Geräte der Serie TST können sowohl über Stecker 1, als auch über Stecker 2 mit Spannung versorgt werden. Im Falle der Verwendung des TST als reiner Transmitter, ist nur ein Anschluss über Stecker 2 erforderlich, da (siehe "Kontaktbelegung an Stecker 1") auch hier Versorgungsspannung angeschlossen werden kann.


Kontaktbelegung Stecker 3 (B-codiert)


Pin 1: Gemeinsamer Kontakt

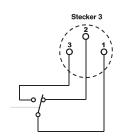
Pin 2: Öffner
Pin 3: Schließer

Schaltausgänge

Schaltausgang OUT1 und OUT2

Die Schaltausgänge können softwareseitig (in der Expertenebene) sowohl als Öffner / Schließer als auch "High Side" und "Low Side" schaltend konfiguriert werden.

In der **Konfiguration "Öffner"** (Normally Closed) liegt das gewählte Spannungspotential (Masse oder Versorgungsspannung) im **ungeschalteten** Zustand an den Ausgängen.

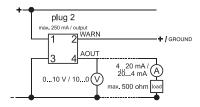

In der **Konfiguration "Schließer"** (Normally Open) liegt das gewählte Spannungspotential (Masse oder Versorgungsspannung) im **geschalteten** Zustand an den Ausgängen.

In der **Konfiguration "Low Side schaltend"** schalten die Ausgänge das Spannungspotential 0V (Masse) gegen einen am OUT1 oder OUT2 angeschlossenen Verbraucher.

In der **Konfiguration "High Side schaltend"** schalten die Ausgänge das Spannungspotential Versorgungsspannung (minus ca. 2 V) gegen einen am OUT1 oder OUT2 angeschlossenen Verbraucher.

Falls die Spannungsversorgungen von Druckschalter und angeschlossener Last unabhängig voneinander ausgeführt sind, ist in jedem Falle zu beachten: Die Potentialdifferenz zwischen OC Ausgang und Ground bzw. OC Ausgang und Versorgungsspannung darf maximal 36 V DC betragen. Ist das Gerät "Low Side schaltend" konfiguriert, muss die externe Versorgungsspannung denselben Massebezug haben, wie das Gerät selbst. Ist das Gerät "High Side schaltend" definiert, muss die externe Spannungsversorgung mit der positiven Versorgungsspannung des Geräts verbunden sein. Dabei ist darauf zu achten, dass der Spannungsabfall im durchgeschalteten Zustand bis zu 2 V betragen kann. Der maximal zulässige Strom am OC beträgt 250 mA pro Schaltausgang (OUT1, OUT2). Dabei darf über jeden Kanal ein maximaler Schaltstrom von 250 mA fließen.

Die Schaltkanäle sind kurzschlussfest, Strom- und Temperaturüberwacht. Beim Einsetzen der Strombegrenzung und bei Überhitzung warnt das Gerät durch Aufleuchten der beiden LED's in Rot. (WARN-Funktion).



Relaisausgang REL

Der Relaisausgang ist in der Version **TST...-R** verwirklicht. Im Expertenmodus kann der Analogausgang softwareseitig sowohl im Ausgang 1 (OUT 1) und Ausgang 2 (OUT 2), als auch mit der WARN-Funktion gekoppelt werden. Der Anwender hat somit frei wählbaren potentialfreien Ausgang für diese 3 wichtigen Funktionen zur Verfügung. Der Wechselschaltkontakt des Relais ist für eine maximale Ohmsche Last von 4 A und einer induktiven Last von 200 VA ausgelegt. Im unteren Bereich sind die 5µ vergoldeten Silberkontakte ausgelegt für eine Minimalbelastung von 50 mW (5 V bei 10 mA).

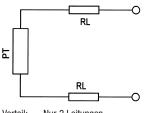
In jedem Fall ist zu beachten, dass nach einer einmaligen schaltstromseitigen Maximalbelastung die Goldbeschichtung der Kontakte abgelöst ist und somit der Einsatz im niedrigen Strom- und Kleinspannungsbereich nicht mehr möglich ist!

Analogausgang

Analogausgang

Der Analogausgang (AOUT) ist in der Version TST...-R verfügbar. Im Expertenmodus ist er konfigurierbar sowohl als $0-10\,\text{V}/10-0\,\text{V}$, als auch als $4-20\,\text{mA}/20-4\,\text{mA}$ Ausgang. Im Auslieferungszustand ist er als $0-10\,\text{V}$ Ausgang eingestellt.

Der Eingangswiderstand des angeschlossenen Verbrauchers darf ${\it maximal~500~Ohm}$ betragen.



Allgemeine Hinweise zur Temperaturerfassung

mit Widerstandssensoren Pt 100 und Pt 1000

Anschlussmöglichkeiten für Pt...-Sensoren

Zweidrahtanschluss

Vorteil: Nur 2 Leitungen Nachteil: Der Leitungswiderstand RL verfälscht das Messergebnis

Platin-Temperatursensoren Pt 100 oder Pt 1000 nutzen die stetige Widerstandsänderung von Metallen bei sich ändernden Temperaturen. Wegen der guten Stabilität und hohen Reproduzierbarkeit wird hauptsächlich eine speziell dafür geeignete Platin-Rhodium-Legierung verwendet. Der Widerstand des Sensors wird bei steigender Temperatur größer.

Die Widerstandswerte sind in DIN IEC 751 wie folgt festgelegt:

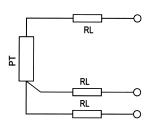
Pt 100 = 100 Ohm bei 0 °C Pt 1000 = 1000 Ohm bei 0 °C

Die Widerstandswerte für alle Temperaturen sind aus der erwähnten Norm zu entnehmen. Die Widerstandssensoren sind nach ihren Grenzabweichungen in Genauigkeitsklassen eingeteilt.

Für die FEMA Pt 100/1000-Sensoren gilt die Klasse A: 0,15 K + 0,002 x t*

*t ist der Zahlenwert der Temperatur in °C (ohne Berücksichtigung des Vorzeichens)

Widerstandswerte der Pt 100-Sensoren (Auszug aus DIN 43 760, IEC 751)

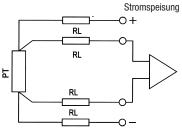

Tempe-				Grundw	erte für F	Pt 100 (O	hm)					Tempe-
ratur												ratur
°C	0	1	2	3	4	5	6	7	8	9	10	°C
- 50	80,31	79,91	79,51	79,11	78,72	78,32	77,92	77,52	77,13	76,73	76,33	- 50
- 40	84,27	83,88	83,48	83,08	82,69	82,29	81,89	81,50	81,10	80,70	80,31	- 40
- 30	88,22	87,83	87,43	87,04	86,64	86,25	85,85	85,46	85,06	84,67	84,27	- 30
- 20	92,16	91,77	91,37	90,98	90,59	90,19	89,80	89,40	89,01	88,62	88,22	- 20
- 10	96,09	95,69	95,30	94,91	94,52	94,12	93,73	93,34	92,95	92,55	92,16	- 10
0	100,00	99,61	99,22	98,83	98,44	98,04	97,65	97,26	96,87	96,48	96,09	0
0	100,00	100,39	100,78	101,17	101,56	101,95	102,34	102,73	103,12	103,51	103,90	0
10	103,90	104,29	104,68	105,07	105,46	105,85	106,24	106,63	107,02	107,40	107,79	10
20	107,79	108,18	108,57	108,96	109,35	109,73	110,12	110,51	110,90	111,28	111,67	20
30	111,67	112,06	112,45	112,83	113,22	113,61	113,99	114,38	114,77	115,15	115,54	30
40	115,54	115,93	116,31	116,70	117,08	117,47	117,85	118,24	118,62	119,01	119,40	40
50	119,40	119,78	120,16	120,55	120,93	121,32	121,70	122,09	122,47	122,86	123,24	50
60	123,24	123,62	124,01	124,39	124,77	125,16	125,54	125,92	126,31	126,69	127,07	60
70	127,07	127,45	127,84	128,22	128,60	128,98	129,37	129,75	130,13	130,51	130,89	70
80	130,89	131,27	131,66	132,04	132,42	132,80	133,18	133,56	133,94	134,32	134,70	80
90	134,70	135,08	135,46	135,84	136,22	136,60	136,98	137,36	137,74	138,12	138,50	90
100	138,50	138,88	139,26	139,64	140,02	140,39	140,77	141,15	141,53	141,91	142,29	100
110	142,29	142,66	143,04	143,42	143,80	144,17	144,55	144,93	145,31	145,68	146,06	110
120	146,06	146,44	146,81	147,19	147,57	147,94	148,32	148,70	149,07	149,45	149,82	120
130	149,82	150,20	150,57	150,95	151,33	151,70	152,08	152,45	152,83	153,20	153,58	130
140	153,58	153,95	154,32	154,70	155,07	155,45	155,82	156,19	156,57	156,94	157,31	140
150	157,31	157,69	158,06	158,43	158,81	159,18	159,55	159,93	160,30	160,67	161,04	150
160	161,04	161,42	161,79	162,16	162,53	162,90	163,27	163,65	164,02	164,39	164,76	160
170	164,76	165,13	165,50	165,87	166,24	166,61	166,98	167,35	167,72	168,09	168,46	170
180	168,46	168,83	169,20	169,57	169,94	170,31	170,68	171,05	171,42	171,79	172,16	180
190	172,16	172,53	172,90	173,26	173,63	174,00	174,37	174,74	175,10	175,47	175,84	190
200	175,84	176,21	176,57	176,94	177,31	177,68	178,04	178,41	178,78	179,14	179,51	200

Die Widerstandswerte der Pt 1000 sind um eine Zehnerpotenz höher.

Beim Anschluss von Pt-Sensoren müssen die Leitungswiderstände zwischen Messstelle und Auswertegerät (z. B. Transmitter) berücksichtigt werden (siehe linke Spalte).

Alle FEMA-Auswertegeräte (Transmitter und Temperaturschalter) haben eine Eingangsschaltung für Dreidrahtanschluss. Die Sensoren sind nach folgenden Plänen anzuschließen. Alle 3 Leitungen müssen gleich lang sein und den gleichen Leitungsquerschnitt haben, um die Leitungswiderstände zu kompensieren.

Dreidrahtanschluss

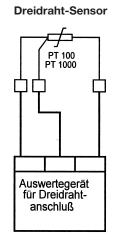


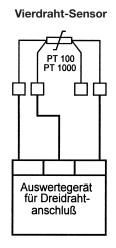
Vorteil:

Die Leitungswiderstände werden durch die Auswerteelektronik berücksichtigt. Das Messergebnis wird nicht verfälscht.

Nachteil: Es werden 3 Leitungen benötigt. Alle 3 Leitungen müssen den gleichen Widerstand haben.

Vierdrahtanschluss




Vorteil: Die Leitungswiderstände spielen durch die Auswerteelektronik (Stromspeisung und hochohmige Spannungsabfrage) keine Rolle. Das Messergebnis wird nicht verfälscht. Die Leitungen können unterschiedliche Widerstände aufweisen.

Nachteil: Es werden 4 Leitungen benötigt.

Anschlussdrähte mit gleichen Farben sind elektrisch miteinander verbunden.

Auswertegerät für Dreidraht-anschluß

P

Temperatursensor Pt 100 in Edelstahl-Ausführung

Die Temperatursensoren bestehen medienberührt komplett aus Edelstahl 1.4571. Sensorelement: Pt 100, Klasse A nach DIN IEC 751, 3-Leiter-Anschluss. Temperaturbereich -50...+400 °C.

Technische Daten

Gehäuse und Deckel

Edelstahl 1.4571 / 316Ti Mediumberührte Teile Edelstahl 1.4571 /

Messtemperatur

316Ti -50...+400 °C G1/2" Außengewinde

Prozessanschluss **Elektrischer Anschluss**

P100... Sensorelement Schraubklemme auf Keramiksockel Pt 100 Temperatursensor gemäß EN 60 751, Klasse A,

Leitungseinführung

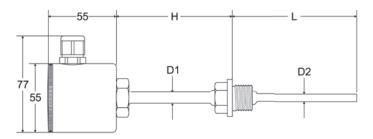
Dreileiterschaltung M16x1,5 Klemmverschraubung

Leitungsdurchmesser Schutzart

 \emptyset 6-9 mm IP 67 (bei vorschriftsmäßigem Verschluss)

Max. zul. Druck Schutzrohr Ansprechzeit

100 bar $au_{0.9}=12~\text{sec}$ (in Wasser bei 0,4 m/s)


Tauchfühler P100 mit Einschraubgewinde G1/2", 6 mm ø

Туре	Max. zulässiger Druck (bar)	Tauchtiefe L (mm)	
P100-100	100	100	
P100-150	100	150	
P100-200	100	200	
P100-250	100	250	

Tauchhülsen (Einschraubgewinde G1/2") Edelstahl 1.4571

Туре	Eintauchtiefe	Anschluss	Max. zul. Druck (bar)	
G12-100	100	G1/2"	40	
G12-250	250	G1/2"	40	

Abmessungen: (Angaben in mm)

L (Einbaulänge)	D1 (Halsrohr ø)	D2 (Schutzrohr ø)	H (Halsrohr)
100 mm	9 mm	6 mm	70 mm
150 mm	9 mm	6 mm	70 mm
200 mm	9 mm	6 mm	70 mm
250 mm	9 mm	6 mm	70 mm

Ausschreibungstexte

TRM/TRMV

Raumthermostate für industrielle Räume Type TRM, Einstellbereich von ... bis ... °C. Schaltdifferenz nicht einstellbar/einstellbar. Alu-Druckgussgehäuse mit Steckanschluss nach DIN EN175301.

T6120

Raumthermostate für industrielle Räume Type T6120..., Einstellbereich von ... bis ... °C. Schaltdifferenz nicht einstellbar/einstellbar. Schaltgehäuse aus ABS, glasfaserverstärkt.

H6045A1002

Kanalhygrostat, Bereich 35....100 % r.F. Schaltgehäuse aus ABS, glasfaserverstärkt.

H6120A1000

Raumhygrostat, Bereich 35....100 % r.F. Schaltgehäuse aus ABS, glasfaserverstärkt.

STW

Sicherheitstemperaturwächter

Einstellbereich von ... bis ... °C, Schaltdifferenz nicht einstellbar, geprüft nach Druckgeräterichtlinie 2014/68/EU, entspricht den Anforderungen der DIN EN14597 und ist damit für Heizungsanlagen nach DIN EN12828 einsetzbar.

STB

Sicherheitstemperaturbegrenzer

Einstellbereich von ... bis ... °C, Schaltdifferenz nicht einstellbar, geprüft nach Druckgeräterichtlinie 2014/68/EU, entspricht den Anforderungen der DIN EN14597 und ist damit für Heizungsanlagen nach DIN EN12828 einsetzbar.

TWP

Temperaturwächter

Einstellbereich 20 ... 150°C, Schaltdifferenz nicht einstellbar, geprüft nach Druckgeräterichtlinie 2014/68/EU, entspricht den Anforderungen der DIN EN14597 und ist damit für Heizungsanlagen nach DIN EN12828 einsetzbar.

FT69

Frostschutzthermostat für Luftheizungs- und Klimaanlagen. Einstellbereich –10 °C...+12°C, voreingestellt auf 5°C fallend. Kapillarlänge: ...m, Rückstellung manuell/automatisch. Schaltgehäuse: ABS und Polykarbonat

TAM

Kapillarthermostat Type TAM, Einstellbereich von ... bis ... °C. Schaltdifferenz nicht einstellbar. Alu-Druckgussgehäuse mit Steckanschluss nach DIN EN175301.

TX

Stabthermostat Type TX, Einstellbereich von ... bis ... °C. Schaltdifferenz nicht einstellbar. Tauchtiefe ...mm. Alu-Druckgussgehäuse mit Steckanschluss nach DIN EN175301.

STW+TR

Sicherheitstemperaturwächter und Temperaturregler Einstellbereich von ... bis ... °C, Schaltdifferenz nicht einstellbar, geprüft nach Druckgeräterichtlinie 2014/68/EU, entspricht den Anforderungen der DIN EN14597 und ist damit für Heizungsanlagen nach DIN EN12828 einsetzbar.

STB+TW/STB+TR

Sicherheitstemperaturbegrenzer und Wächter/Regler Einstellbereich von ... bis ... °C, Schaltdifferenz nicht einstellbar, geprüft nach Druckgeräterichtlinie 97/23EG, entspricht den Anforderungen der DIN EN14597 und ist damit für Heizungsanlagen nach DIN EN12828 einsetzbar.

TST...R

Elektronischer Thermostat und Temperaturtransmitter Mit 2 Open-Collector-Schaltausgängen, Analog-ausgang und potenzialfreiem Relaisausgang, Spannungsversorgung 14–36 VDC, Schutzart IP 65, Schaltpunkte frei einstellbar, Bereich: ... bis ... °C, Tauchtiefe ... mm.

Frei programmierbarer Analogausgang 4...20 mA oder 0...10 V (auch invertierbar).

P100

Tauchsensor komplett in Edelstahl-Ausführung (1.4571), Schutzart IP67, Pt 100, Klasse A nach DIN EN 60751, 3-Leiter-Anschluss, Kabeleinführung M16 x 1,5, Temperaturanschluss - ...+ 400°C, Sensorlänge ...mm

FTSE

Elektronischer Frostschutzthermostat für Luftheizung- und Klimaanlagen mit analogem Signalausgang 0 - 10V. Spannungversorgung: 24VAC. Messbereich: 0...15°C, Einstellbereich (Grenzkontakt): 1...10°C. Kapillarlänge: ...m. Gehäuse: ABS, Polycabonat (transparent) und Polyamid (silbergrau)

Temperatursensoren

Strömungswächter

Luft und Klimatechnik

S6040

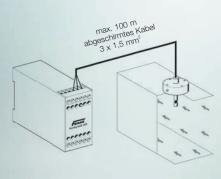
Strömungsüberwachung in Lüftungsanlagen

Der Luftströmungswächter S6040A1003 ist geeignet zur Strömungsüberwachung von Luft und nicht aggressiven Gasen in Lüftungskanälen von Klimaanlagen und Luftreinigungssystemen.

→ S. 136

Luft und Klimatechnik

KSL


Luftstromüberwachung in Kompaktbauform

Geeignet sind die Luftstromsensoren für das Medium Luft, für alle nicht brennbaren und nicht aggressiven Gase. Das Einsatzgebiet liegt in der Lüftungs- und Klimatechnik. Während der Anlaufphase des Ventilators ist die Einschaltüberbrückung wirksam, die Überbrückungszeit (2–60 s) ist einstellbar.

KSL 230

→ S. 137

Luft und Klimatechnik

SWL

Luftstromüberwachung

Mit der Kombination Sensor SLF und dem Auswertegerät ASL... kann die Strömung in Luft überwacht werden (z. B. in Klimaanlagen). Der Schaltpunkt ist einstellbar. Während der Anlaufphase des Ventilators ist die Einschaltüberbrückung wirksam, die Überbrückungszeit (2–60 s) ist einstellbar.

S6065

Strömungsüberwachung für flüssige Medien

Die nach Strömung 100 geprüften Strömungswächter der Serie S6065A sind besonders geeignet für die Strömungsüberwachung von Kühlmitteln in Klima-anlagen und Kühlgeräten. Die Ausführung in V4A eignet sich auch für die Überwachung aggressiver Flüssigkeiten.

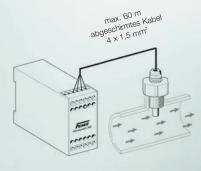
→ S. 139

Geprüft

nach Strömung 100

Flüssigkeiten und Gase

KSW


Strömungsüberwachung in Kompaktbauform

Die Kompaktströmungssensoren sind geeignet zur Überwachung von Kühl- (bis zu 35 % Glykolanteil) und Heizkreisläufe und für aggressive Medien, bei denen es die Beständigkeit des Werkstoffes (1.4305) erlaubt.

KSW230

→ S. 141

Flüssigkeiten und Gase

SWW

Strömungsüberwachung

Mit der Kombination Sensor SWF62 und dem Auswertegerät ASW... kann die Strömung in flüssigen und gasförmigen Medien überwacht werden. Der Schaltpunkt ist durch ein Grob- und Feinpotentiometer einstellbar. Das System ist besonders geeignet für die Überwachung von Wasser- und Kühlkreisläufen (bis max. 35 % Glykolanteil).

Baureihe S6040

Strömungsüberwachung in Lüftungsanlagen

Der Luftströmungswächter S6040A1003 ist geeignet zur Strömungsüberwachung von Luft und nicht aggressiven Gasen in

Lüftungskanälen von Klimaanlagen und Luftreinigungssystemen.

Technische Daten

Schaltvermögen 15 (8) A, 24...250 VAC 2 A, 24 VDC

Lebensdauer

50000 Zyklen bei nominaler Belastung

Arbeitstemperatur -40 °C...+85 °C

Elektrischer Anschluss

Schraubklemmen für 1,5mm²

Kabeldurchmesser 6...9 mm

Schutzklasse I gemäß EN60730

Schutzart IP65 gemäß EN60529

Gehäusewerkstoff

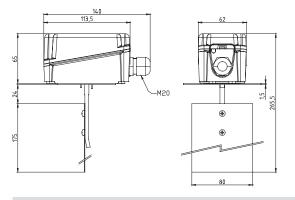
ABS und Rostgeschützter Stahl

Ersatzwindfahne: PA1

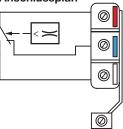
Geräteausführungen

Ausführung	Туре
	S6040A1003
Überwachtes Medium	Luft
Montage	Senkrecht durch eine
	20 mm Bohrung.
	Montage der Windfahne
	innenseitig.
Max. zulässige Mediumtemperatur	85 °C
Druck	0,25 bar
Werkstoff Paddel	1.4301
Werkstoff Paddelhebel	Messing
Gehäuseabmessungen	108 x 70 x 72 mm
Gewicht	700 g
Ersatzwindfahne	PA1

Montage


Der Luftströmungswächter S6040A1003 (mit beigelegtem Paddel) wird mit dem Schaltgehäuse nach oben in den Luftkanal eingebaut. Das Paddel wird von der Innenseite des Luftkanals montiert. Notwendiger Beruhigungsweg: mindestens 5 x Kanaldurchmesser vor- und hinter dem Schalter! Um eine fachgerechte Abdichtung zu gewährleisten, muss das Gerät mit der beigelegten Dichtungsplatte durch eine 20 mm große Bohrung mittels der beiliegenden Schrauben auf dem Lüftungskanal befestigt werden. Nachdem das Gerät auf dem Kanal montiert ist, wird das Paddel von der Innenseite aus am Schaft befestigt.

Schaltpunkteinstellung


CE

Unterster Schaltpunkt: etwa 2,5 m/s; Rückschaltpunkt: 1 m/s. Oberster Schaltpunkt: etwa 9,2 m/s; Rückschaltpunkt: 8,0 m/s.

Maßzeichnung (Angaben in mm)

Anschlussplan

Bei fallender Strömung von rot – weiß auf rot – blau umschaltend. Bei steigender Strömung von rot – blau auf rot – weiß umschaltend.

Schutzart: IP 65

Baureihe KSL

Mit den Kompakt-Strömungswächtern wird die Luftströmung in Lüftungskanälen zuverlässig auf Unterschreiten eines einstellbaren Schaltpunktes überwacht. Die Empfindlichkeit und damit der Schaltpunkt kann über einen Potentiometer sehr genau eingestellt werden. Der Schaltzustand wird durch eine gelbe LED angezeigt.

Die Fühlerspitze muss vom Medium vollständig umströmt werden. Die Auswertung des Signals sowie der Schaltvorgang erfolgt direkt im Gerät und bedarf somit keinen extra Raum im Schaltschrank.

Technische Daten

Mediumstemperatur −10...+80 °C,

Max. Umgebungstemperatur -20...+60 °C

Temperaturkompensation

schnell, Anpassung max. 0,3 s nach Temperaturänderung der Luft.

Werkstoff des Fühlerrohrs MS 58, vernickelt

Max. zulässiger Druck 10 bar

Anschluß PG 7, Montageflansch

Betriebsspannung 230 V AC bzw. 24 V AC/DC

Leistungsaufnahme 4 VA

Schaltausgang

Relais, einpolig umschaltend 250 V AC, 10 (2) A

Temperaturgradient 15 K/min.

Strömungsgeschwindigkeit 0,1...30 m/s

Ansprechzeit 1...5 s

Die Änsprechzeitverlängernd wirken u.a. Temperaturen > 80 °C, Medium-Verschmutzungsgrad und Fließgeschwindigkeit

Messelement

Unempfindlich gegen Feuchtigkeit. Reinigung nur unter fließendem Wasser ohne Werkzeug!

Eintauchtiefe max. 130 mm

Fühlerbruchsicherung

Bei mechanischer Zerstörung des Sensorelements, sowie bei Leitungsbruch oder Kurzschluss fällt das Relais ab.

Reproduzierbarkeit d. Schaltpunktes $\pm 1 \%$ Gewicht 400 q

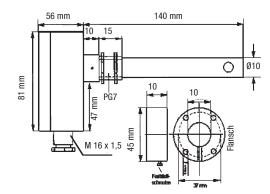
Einbaubedingungen

Die Fühlerspitze sollte in der Rohrmitte sitzen und muss voll vom Medium umspült werden. Gerade Rohrleitung vorsehen: 5 x D vor und nach dem Sensor

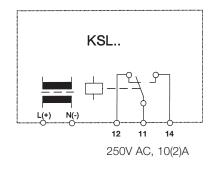
Anwendungen und Einsatzbedingungen

Der Sensor wird mit geringem Aufwand installiert und besitzt keinerlei mechanisch bewegte Teile, die verschleißen könnten. Optimal geeignet für den Einsatz in der Lüftungs- und Klimatechnik, wo der Sensor für die Ventilatorüberwachung, die Zuluftkontrolle, sowie die Stellklappenüberwachung eingesetzt wird. Weitere Anwendungsgebiete sind die Reinraumtechnik, wo der Sensor für die Luftschleußenüberwachung eingesetzt werden kann. Optimal geeignet für das Medium, Luft und alle nicht brennbaren und nicht aggressiven Gase.

I Funktionsweise


Die elektronischen Strömungswächter arbeiten nach dem kalorimetrischen Prinzip. Ein temperaturempfindlicher Widerstand wird aufgeheizt. Durch das strömende Medium wird Wärme entzogen, der Widerstand ändert sich. Diese Widerstandsveränderung wird ausgewertet. Da der Widerstandswert auch von der Temperatur des Mediums abhängig ist, wird intern durch einen zweiten temperaturabhängigen Widerstand die Differenz ermittelt und so die Temperaturabweichung ausgeglichen.

Dadurch wird der Schaltpunkt zuverlässig stabil gehalten. Am Sensor anhaftende Schwebstoffe können isolierend wirken und somit das Messergebnis und damit den eingestellten Schaltpunkt beeinflussen. Deshalb ist es ratsam, Verschmutzungen im turnusmäßigen Wartungszyklus zu beseitigen.


Typenübersicht

Туре	Speisespannung
KSL230	230 V AC
KSL24	24 V AC/DC

Maßzeichnung (Angaben in mm)

Anschlussplan

Einstellpotentiometer

- + = hohe Empfindlichkeit
- = niedrige Empfindlichkeit


Signallampen

- · Netzspannung vorhanden: LED grün EIN
- Einschaltverzögerung EIN:
 LED "Zeit" gelb EIN
- Strömung vorhanden:
 LED "Luftstrom" gelb EIN

SWL

Luftstromüberwachung

Der Schaltpunkt ist einstellbar. Während der Anlaufphase des Ventilators ist die Einschaltüberbrückung wirksam, die Überbrückungszeit (2–60 s) ist einstellbar.

Technische Daten des Sensors

FEARE

max. 100 m abgeschirmtes Kabel 3 x 1,5 mm²

Allgemeines Schnell reagierender Luftstromsensor mit verschiebbarem Flansch zum Einbau in Luftkanäle. Mit Temperaturkompensation, geeignet für Medien mit schnellen Temperaturänderungen.

Mediumstemperatur -20...+100 °C

Kompensationsverhalten (Reaktionsgeschwindigkeit bei Änderung der Mediumstemperatur) schnell, ca. 0,3 s

Einbautiefe 35 mm

Durchmesser des Fühlerrohrs 10 mm

Werkstoff des Fühlerrohrs Ms vernickelt

Meßelement Unempfindlich gegen Feuchtigkeit (Reinigung im Wasser ist möglich). Empfindlich gegen mechanische Verbiegung (Vorsicht beim Reinigen mit harten Gegenständen).

Schutzart IP 67

Elektrischer Anschluss Klemmleiste nach Abnahme des Deckels zugänglich. 3-adrige Verbindung zum Auswertegerät

Einbaubedingungen Die Fühlerspitze sollte in der Rohrmitte sitzen und muss voll vom Medium umspült werden. Gerade Rohrleitung vorsehen: 5 x D vor und nach dem Sensor

Technische Daten des Auswertegeräts

Betriebsspannung 230 V AC oder 24 V AC/DC (siehe Typenübersicht)

Leistungsaufnahme ca. 3 VA

Schaltausgang Relais, einpolig umschaltend 8 A, max. 250 V AC

Umgebungstemperatur 0 − 60 °C

Strömungsgeschwindigkeit Einstellbar 0,1...20 m/s bei gasförmigen Medien

Ansprechzeit 1...5 s

Die Ansprechzeitverlängernd wirken u.a. Temperaturen > 80 °C, Medium-Verschmutzungsgrad und Fließgeschwindigkeit

 $\label{eq:wiederholgenauigkeit} \textbf{Wiederholgenauigkeit} < 2 \text{ \%, bezogen auf die Strömungsgeschwindigkeit direkt am Sensor.}$

Schalthysterese ca. 2 % vom Gesamtbereich

Max. Kabellänge zwischen Sensor und Auswertegerät

100 m, bei abgeschirmtem Kabel 1,5 mm².

Fühlerbruchsicherung Bei Bruch oder Unterbrechung der Fühlerleitungen wird abgeschaltet bzw. Unterbrechung der Strömung signalisiert.

Bauform Normgehäuse N 45 (Länge/Breite/ Höhe: 120 mm/45 mm/73 mm)

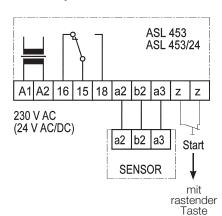
Gewicht ca. 0,35 kg

I Funktion

Die Luftstromwächter arbeiten nach dem kalorimetrischen Prinzip. Ein temperaturempfindlicher Widerstand wird aufgeheizt. Durch strömende Luft wird Wärme entzogen, der Widerstand ändert sich. Diese Widerstandsänderung wird ausgewertet. Da der Widerstandswert auch von der Temperatur des Mediums abhängig ist, muß durch einen zweiten temperaturabhängigen Widerstand die Differenz ausgeglichen werden. Die Differenz wird kompensiert und damit der Schaltpunkt stabil gehalten. Am Sensor anhaftende Schwebstoffe können isolierend wirken und somit das Messergebnis und damit den eingestellten Schaltpunkt beeinflussen. Deshalb ist es ratsam, Verschmutzungen im turnusmäßigen Wartungszyklus zu beseitigen.

Einschaltüberbrückung

Während des Hochfahrens der Anlage (noch keine Luftströmung vorhanden), wird der Ausgangskontakt aktiviert und der Strömungszustand signalisiert. Die Zeit für die Einschaltüberbrückung ist von 2–60 s einstellbar. Die Anlauf- oder Einschaltüberbrückung startet beim Einschalten des Geräts. Bei externer Beschaltung (Klemmen Z-Z) mit einer Starttaste (Öffnerkontakt) beginnt die Anlaufüberbrückung mit dem Betätigen der Taste (rastend).


Typenübersicht

Туре		Speisespannung
SLF3	Sensor, 35 mm	-
ASL453	Auswertegerät	230 V AC
ASL453/24	Auswertegerät	24 V AC/DC

Bedienoberfläche

(((((
A1	15	a2	b2	a3
Zeit trime 1 t + ASL453 230 V AC Sensivity s				
16	18	Z	Z	A2
(4	((4)	(

Anschlußplan

Einstellelemente

- = Empfindlichkeit
- t = Zeit für Einschaltüberbrückung (hohe Empfindlichkeit bei kleiner Strömung)

Signallampen

- 1 = Strömung vorhanden oder Einschaltüberbrückung aktiv
- 2 = Speisespannung vorhanden

Maßzeichnung SLF siehe S. 140

Bei Funktionsstörung kann durch Überprüfung der Widerstände zwischen den Anschlußleitungen ein Sensorfehler ausgeschlossen werden. Hierbei ist der Sensor SLF 15 abzuklemmen und mit einem geeignetem Ohmmeter zwischen den einzelnen Anschlussadern zu messen:

Schwarz-braun ca. 8,2 kOhm Schwarz-grau ca. 8,2 kOhm Braun-grau ca. 18 kOhm

Die Klemmenspannung der Auswertegeräte ASW454 oder ASW 454/24 kann bei abgeklemmtem Sensor zwischen den Klemmen "a2"und "a3" ebenfalls mit einem Voltmeter überprüft werden.

31,4 VDC ist der richtige Wert.

Baureihe S6065

Strömungsüberwachung für flüssige Medien

Die nach Strömung 100 geprüften Strömungswächter der Serie S6065A sind besonders geeignet für die Strömungsüberwachung von Kühlmitteln in Klimaanlagen

und Kühlgeräten. Die Ausführung in V4A eignet sich auch für die Überwachung aggressiver Flüssigkeiten.

Technische Daten

Schaltvermögen 15 (8) A, 24...250 VAC 2 A, 24 V DC

Lebensdauer

50000 Zyklen bei nominaler Belastung

Elektrischer Anschluss

Schraubklemmen für 1,5 mm²

Kabeldurchmesser 6...9 mm

Schutzklasse I gemäß EN60730

Schutzart IP65 gemäß EN60529

Gehäusewerkstoff

ABS und Rostgeschützter Stahl

Produktmerkmale

- · Kostengünstige Lösung für die Strömungsüberwachung in HLK Anlagen
- Voll gekapselter Mikroschalter (1-poliger
- Wechselkontakt) mit hoher Strombelastbarkeit
- · Geprüft nach Strömung 100

Schaltpunkteinstellung

Das Gerät ist auf den untersten Schaltbereich voreingestellt. Der gewünschte Schaltpunkt kann durch Drehen der Einstellschraube im Uhrzeigersinn (im Bereich der Anschlussklemmen) eingestellt werden. Schaltwerttabelle 1 zeigt Rückschaltpunkte (RP) und Schaltpunkte (SP), sowie die Paddelgröße bei verschiedenen Rohrdurchmessern.

Paddellängen:

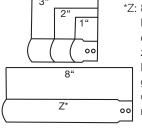
1": 28,5 mm 2": 54,5 mm 3": 83,5 mm 8": 161,5 mm

Ersatzpaddel: PA2

FEMA

Montage

Die Strömungswächter für flüssige Medien S6065A1003 und S6065A2001 können in beliebiger Position montiert werden, müssen aber in genügendem Abstand von Rohrwinkeln Filtern, und Ventilen positioniert werden. Der Pfeil auf dem Gehäuse muss in Fließrichtung zeigen. Beim Einbau in senkrechte Leitungen muss darauf geachtet werden, dass die Fließrichtung von unten nach oben geht. Außerdem ist eine Nachjustierung des Schaltpunktes erforderlich, da sich das Gewicht des Paddels in dieser Position auf den Abschaltbereich auswirkt. Um den internen Federbalg vor Schmutzablagerungen zu schützen, darf das Gerät niemals mit dem Gehäuse nach unten in die Rohrleitung eingebaut werden.


Geräteausführungen

Ausführungen	S6065A1003	S6065A2001
Überwachtes Medium	nicht aggressive Flüssigkeiten	aggressive Flüssigkeiten
Montage	Rp 1" (ISO 7/1)	Rp 1" (ISO 7/1)
Arbeitstemperatur	-40+85 °C	-40+85 °C
Max. zul. Mediumstemp. (Spitze, kurzzeitig)	120 °C	120 °C
Druck	11 bar	30 bar
Werkstoff Sensorgehäuse	Messing	1.4404
Werkstoff Paddel	1.4401	1.4401
Werkstoff Paddelhebel	Messing	1.4401
Gehäuseabmessungen	113 x 70 x 65 mm	113 x 70 x 65 mm
Gewicht	850 g	850 g
Zulassungen	Strömung 100	Strömung 100
Ersatzpaddel	PA2	

Maßzeichnung: s. Seite 140

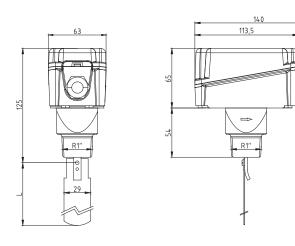
Schaltwerttabelle 1

Rohr DN	Länge des	Rückschalt- und Schaltpunkte (m³/h)			
	Paddel	min. Flie	ßgeschw.	max. Fli	eßgeschw.
		RP	SP	RP	SP
1"	1"	0,6	1,0	2,0	2,1
1 1/4"	1"	0,8	1,3	2,8	3,0
1 1/2"	1"	1,1	1,7	3,7	4,0
2"	1" + 2"	2,2	3,1	5,7	6,1
2 1/2"	1" + 2"	2,7	4,0	6,5	7,0
3"	1" + 2" + 3"	4,3	6,2	10,7	11,4
4"	1" + 2" + 3"	11,4	14,7	27,7	29,0
4"	1" + 2" + 3" +Z*	6,1	8,0	17,3	18,4
5"	1" + 2" + 3"	22,9	28,4	53,3	55,6
5"	1" + 2" + 3" +Z*	9,3	12,9	25,2	26,8
6"	1" + 2" + 3"	35,9	43,1	81,7	85,1
6"	1" + 2" + 3" + Z*	12,3	16,8	30,6	32,7
8"	1" + 2" + 3"	72,6	85,1	165,7	172,5
8"	1" + 2" + 3" +Z*	38.6	46.5	90.8	94.2

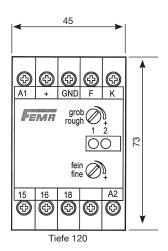
*Z: 8" -Paddel ist dem Rohrdurchmesser entsprechend zu kürzen. Das Paddel darf im eingebauten Zustand die Rohrwandungen nicht berühren.

Anschlussplan

Bei fallender Strömung von rot - weiß auf rot - blau umschaltend. Bei steigender Strömung von rot blau auf rot - weiß umschaltend.



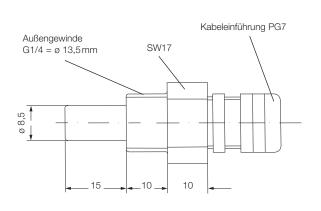
Schutzart:


Baureihen S6065 / SLF3 / SWF62 / SWF62L

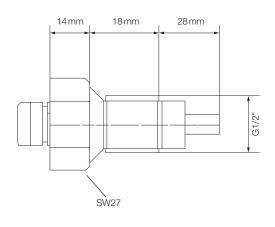
Abmessungen (Angaben in mm)

S6065A1003 / S6065A2001

ASL453 / ASW454



SLF3



M20

SWF62

SWF62L

Baureihe KSW

Strömungsüberwachung von flüssigen und leitungsgebundenen, gasförmigen Medien

Mit den Kompakt-Strömungswächtern wird die Strömung in Flüssigkeiten und in leitungsgeführten Gasen zuverlässig auf Unterschreiten eines einstellbaren Schaltpunktes überwacht. Die Empfindlichkeit und damit der Schaltpunkt kann über einen Grob- und Feinpotentiometer

sehr genau eingestellt werden. Der Schaltzustand wird durch eine gelbe LED angezeigt. Die Fühlerspitze muss vom Medium vollständig umströmt werden.

Technische Daten

Mediumstemperatur -10...+80 °C,

Max. Umgebungstemperatur -20...+60 °C

Temperaturkompensation

0–80 °C, höhere Temperaturen (bis max. 120 °C) können eine Schaltpunktverschiebung auslösen, den Sensor aber nicht beschädigen.

Sensorwerkstoff

Mediumsberührend: Edelstahl 1.4305 Vergußmasse: Wepuran (vu 4459/41 sv)

Max. zulässiger Druck 30 bar

Anschlußgewinde G 1/2"

Betriebsspannung 230 V AC bzw. 24 V AC/DC

Leistungsaufnahme 4 VA

Schaltausgang

Relais, einpolig umschaltend 250 V AC, 10 (2) A

Max. Temperaturgradient 15 K/min.

 $\textbf{Str\"{o}mungsgeschwindigkeit}~0,05...3~\text{m/s}$

Ansprechzeit 5...60 s

Die Ansprechzeitverlängernd wirken u.a.
Temperaturen > 80 °C, MediumVerschmutzungsgrad, Fließgeschwindigkeit
und Glykolgehalt oder Additive.

Fühlerbruchsicherung

Bei mechanischer Zerstörung des Sensorelements, sowie bei Leitungsbruch oder Kurzschluss fällt das Relais ab.

Reproduzierbarkeit des Schaltpunktes

+/- 1 %

Gewicht 430 g

Einbaubedingungen

Die Fühlerspitze sollte in der Rohrmitte sitzen und muss voll vom Medium umspült werden. Gerade Rohrleitung vorsehen: 5 x D vor und nach dem Sensor. Fehlerfunktionen können bei Einbau direkt hinter u. a. Ventilen, Klappen und Abzweigen mödlich sein.

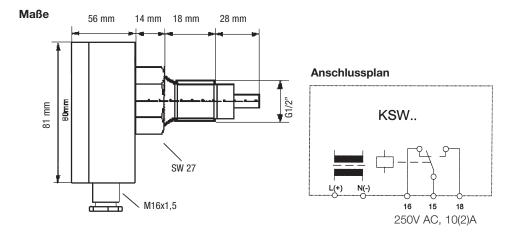
Anwendungen und Einsatzbedingungen

Der Sensor wird mit geringem Aufwand installiert und besitzt keinerlei mechanisch bewegte Teile, die verschleißen könnten. Besonders geeignet für die Überwachung von Kühl- und Heizkreisläufen mit bis zu 35 % Glykolanteilen. Überwachung und Trockenlaufschutz für Pumpen. In der Chemischen Industrie werden diese Geräte zur Strömungsüberwachung wässriger Laugen und Basen verwendet. Voraussetzung dabei ist die Verträglichkeit mit dem Werkstoff 1.4305. Durch die robuste Konstruktion eignet sich der Sensor auch für gering verschmutzte, und bei gegebener Werkstoffverträglichkeit auch für aggressive Medien. Am Sensor anhaftende Schwebstoffe können isolierend wirken und somit das Messergebnis und damit den eingestellten Schaltpunkt beeinflussen. Deshalb ist es ratsam, Verschmutzungen im turnusmäßigen Wartungszyklus zu beseitigen.

I Funktionsweise

CE

Die elektronischen Strömungswächter arbeiten nach dem kalorimetrischen Prinzip. Ein temperaturempfindlicher Widerstand wird aufgeheizt. Durch das strömende Medium wird Wärme entzogen, der Widerstand ändert sich. Diese Widerstandsveränderung wird ausgewertet. Da der Widerstandswert auch von der Temperatur des Mediums abhängig ist, wird intern durch einen zweiten temperaturabhängigen Widerstand die Differenz ermittelt und so die Temperaturabweichung ausgeglichen. Dadurch wird der Schaltpunkt zuverlässig stabil gehalten.

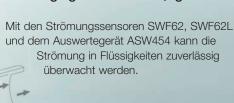

Туре	Speisespannung	
KSW230	230 V AC	
KSW24	24 V AC/DC	

Bedienoberfläche und Maßzeichnung Einstellpotentiometer

Empfindlichkeit grob und fein (hohe Empfindlichkeit bei kleiner Strömung).

Signallampen

Netzspannung vorhanden: LED grün "Netz" EIN Strömung vorhanden: LED gelb "Strömung" EIN



ASW454

Baureihe SWW

Strömungsüberwachung von flüssigen und leitungsgebundenen, gasförmigen Medien

Die Empfindlichkeit kann mit einem Grob- und Feinpotentiometer feinfühlig eingestellt werden. Der Schaltzustand wird durch LED angezeigt. Die Fühlerspitze muss vollständig umströmt werden.

Technische Daten des Sensors

max. 60 m abgeschirmtes Kabel

4 x 1,5 mm²

Allgemeines Der Strömungssensor aus Edelstahl 1.4571 eignet sich für gering verschmutzte und bei gegebener Werkstoffverträglichkeit auch für aggressive, flüssige Medien. Auch die Strömung in gasförmigen Medien kann mit diesem Sensor erfaßt werden.

Mediumstemperatur 0...80 °C, höhere Mediumstemperaturen (bis 120 °C) können Schaltpunktverschiebungen auslösen; der Sensor wird jedoch nicht beschädigt.

Temperaturkompensation bis 80 °C

Sensorwerkstoff

Mediumsberührend: Edelstahl 1.4571 Vergußmasse: Wepuran (vu 4459/41 sv) Kabelverschraubung: Ms vernickelt

Max. zulässiger Druck 20 bar

Anschlußgewinde G 1/4" oder G 1/2"

Anschlußleitung vieradrig, 2,5 m lang

Schutzart IP 67

Einbaubedingungen Die Fühlerspitze sollte in der Rohrmitte sitzen und muss voll vom Medium umspült werden. Gerade Rohrleitung vorsehen: 5 x D vor und nach dem Sensor. Fehlerfunktionen können bei Einbau direkt hinter u. a. Ventilen, Klappen und Abzweigen möalich sein.

Technische Daten des Auswertegeräts

Betriebsspannung 230 V AC oder 24 V AC/DC (siehe Typenübersicht)

Leistungsaufnahme ca. 3 VA

Schaltausgang Relais, einpolig umschaltend 8 A, max. 250 V AC

Umgebungstemperatur 0 – 60 °C

Max. Temperaturgradient 10 K/min.

Strömungsgeschwindigkeit

0,1...3 m/s (bei flüssigen Medien) 1...15 m/s (bei gasförmigen Medien)

Ansprechzeit 5...60 s

Die Ansprechzeitverlängernd wirken u.a. Temperaturen > 80 °C, Medium-Verschmutzungsgrad, Fließgeschwindigkeit und Glykolgehalt oder Additive.

Wiederholgenauigkeit < 2 %, bezogen auf die Strömungsgeschwindigkeit am Sensor.

Schalthysterese

Ca. 2 % vom Gesamtbereich.

Max. Kabellänge zwischen Sensor und Auswertegerät

60 m, bei abgeschirmtem Kabel 1,5 mm².

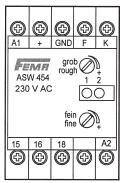
Fühlerbruchsicherung Bei Bruch oder Unterbrechung der Fühlerleitungen wird abgeschaltet bzw. Unterbrechung der Strömung signalisiert.

Bauform Normgehäuse N 45 (Länge/Breite/ Höhe: 120 mm/45 mm/73 mm)

Gewicht ca. 0,35 kg

Funktion

SWF62

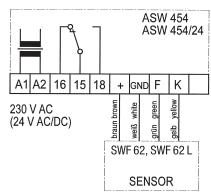

Die Strömungswächter arbeiten nach dem kalorimetrischen Prinzip. Ein temperaturempfindlicher Widerstand wird aufgeheizt. Durch das strömende Medium wird Wärme entzogen, der Widerstand ändert sich. Diese Widerstandsänderung wird ausgewertet. Da der Widerstandswert auch von der Temperatur des Mediums abhängig ist, muss durch einen zweiten temperaturabhängigen Widerstand die Differenz ausgeglichen werden. Die Differenz wird kompensiert und damit der Schaltpunkt stabil gehalten. Bei der Überwachung von hohen Strömungsgeschwindigkeiten können schnelle Temperaturschwankungen Schaltvorgänge auslösen. Am Sensor anhaftende Schwebstoffe können isolierend wirken und somit ebenfalls das Messergebnis und damit den eingestellten Schaltpunkt beeinflussen. Deshalb ist es ratsam, Verschmutzungen im turnusmäßigen Wartungszyklus zu beseitigen.

Typenübersicht

Sensoren	Туре	Einschraub- gewinde	Sensorlänge (ab Gew.)	Gewindelänge
	SWF62	G 1/4	25 mm	10 mm
	SWF62L	G 1/2	45 mm	18 mm

Auswerte- geräte	Туре	Speisespannung
	ASW454	230 V AC
	ASW454/24	24 V AC/DC

Bedienoberfläche


Einstellelemente

Empfindlichkeit (grob und fein) (hohe Empfindlichkeit bei kleiner Strömung)

Signallampen

- 1 = Strömung vorhanden
- 2 = Speisespannung vorhanden

Anschlussplan

Bei Funktionsstörung kann durch Überprüfung der Widerstände zwischen den Anschlußleitungen des Sensors ein Fehler am Sensor ausgeschlossen werden. Hierbei ist der Sensor SWF62 oder SWF62L abzuklemmen und mit einem geeignetem Ohmmeter zwischen den einzelnen Anschlußadern zu messen:

Weiß-braun ca. 0,2 k0hm Weiß-grün ca. 1,0 k0hm Weiß-gelb ca. 1.0 k0hm

Die Klemmenspannung der Auswertegeräte ASW454 oder ASW 454/24 kann bei abgeklemmtem Sensor zwischen den Klemmen "+"und "Gnd" ebenfalls mit einem Voltmeter überprüft werden. 14,8 VDC ist der richtige Wert.

Maßzeichnung SWF... siehe S. 140

Schutzart: IP 67 (Sensor) IP 20 (Auswertegerät)

Druckschalter

Temperatursensoren

Strömungswächter

VKD

Zubehör für Differenzdruckschalter und Differenzdrucktransmitter

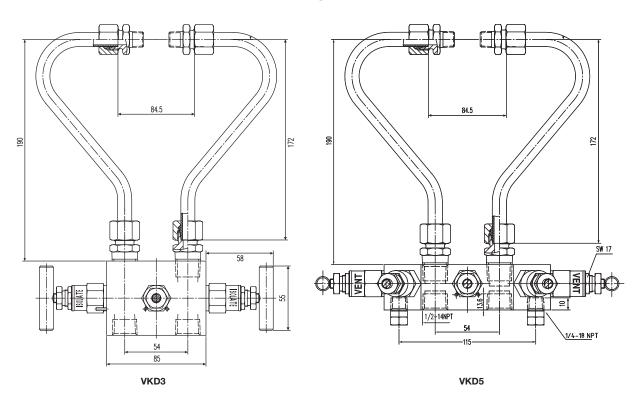
Die Ventilblöcke sind geeignet für: Differenzdruckschalter DDCM014 bis DDCM16, Differenzdruckschalter Smart DCM DIFF, Differenzdruckschalter Smart SN DIFF

Technische Daten

Druckstufe Werkstoffe

Dichtungen Prozessanschlüsse Lieferumfang PN 420 Gehäuse 1.4404 Innenteile 1.4571 PTFE 1/2–14 NPT Komplett mit Verschraubungen und geformten Rohrstücken in

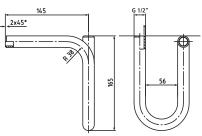
Edelstahl.

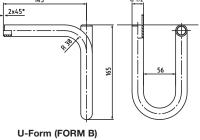

Typenübersicht

Туре	
VKD3	3-fach Kombination
VKD5	5-fach Kombination

Die Ventilblöcke werden eingesetzt zum Absperren der Impulsleitungen von flüssigen und gasförmigen Medien. Mit der 3-fach Kombination kann neben den Implusleitungen auch die Bypassleitung abgesperrt werden. Die 5-fach Kombination enthält 2 zusätzliche Entlüftungsventile.

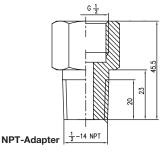
Beim Einsatz mit Smart DCM DIFF und Smart SN DIFF ist jedes der beiden Winkelrohre sensorseitig um **12 mm** zu kürzen.

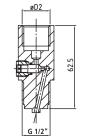

Maßzeichnung (Angaben in mm)



Wassersackrohre

Eintritt: Anschweißende mit Schweißfase


Туре	Form	Werkstoff
U430B	В	St 35.8-I
U480B	В	1.4571
K430D	D	St 35.8-I
K480D	D	1.4571


Wassersackrohre nach DIN 16 282 aus nahtlosem Stahlrohr Ø 20 mm

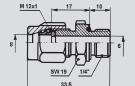
Austritt: Anschlusszapfen DIN 16 282 Form 6 G 1/2" mit Spannmuffe DIN 16 283 G 1/2

Kreisform (FORM D)

Anschluß-zapfen male connec

NPT-Adapter

Der NPT-Adapter dient zum Anschluss von Druckschaltern, Drucktransmittern, Manometern usw. an NPT-Gewindeanschlüsse. Eine passende Dichtungsscheibe wird mitgeliefert.

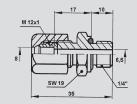

Туре	Beschreibung
NPT1	NPT-Adapter, Werkstoff 1.4104 und Dichtring DIN 16 258, Form C Werkstoff ITC nach DIN 3754 T.1

Druckstoßminderer

Туре	Werkstoff	Max. zul. Druck
DMW	Ms	400 bar bei 60 °C

MAU

Verschraubung mit Einschraubnippel


MAU8/Ms

DMW

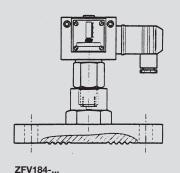
für Differenzdruckschalter und -transmitter

Verschraubung mit Einschraubnippel G 1/4" / 8 mm zum Anschluss von:

- · Differenzdruckschaltern DDCM014 16
- · Differenzdruckschalter Smart DCM DIFF
- · Differenzdrucktransmitter Smart SN DIFF
- · Druckschalter 1/4"-Innengewinde

MAU 8 / Nst alle Maßangaben in mm

Technische Daten


Maximal zulässige Temperatur: Maximal zulässiger Druck:

100 °C 100 bar

Typenübersicht

Туре		Gehäuse	O-Ring
MAU8/MS	G1/4-Einschraubgewinde Messing mit O-Ringabdichtung zum	Messing Edelstahl	NBR
MAU8/Nst	Anschluss von Rohren mit 8 mm Außendurchmesser	(1.4571)	FPM

ZFV

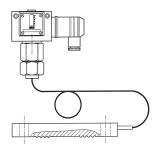
Druckmittler/Trennmembranen

angebaut an Druckschalter

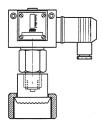
Eine Trennmembrane bzw. ein Druckmittler ist notwendig, wenn aggressive, zähflüssige oder kristallisierende Medien vom eigentlichen Drucksensor fernzuhalten sind. Auch zur Vermeidung von Hohlräumen – wenn es auf die leichte Reinigung der Zuleitungen ankommt – ist ein Druckmittler unumgänglich. Für die Drucküberwachung in der Lebensmittelproduktion sind

spezielle "Milchrohrverschraubungen" nach DIN 11 851 üblich. Druckmittler und Auswertegerät (Druckschalter, Manometer) bilden eine geschlossene Einheit. Die Übertragungsflüssigkeit (Füllmedium) überträgt den Mediumsdruck von der Trennmembrane auf das Messelement. Das Füllmedium M 20 ist lebensmittelverträglich und mit seiner hohen Temperaturbeständigkeit von -40 bis +300 °C auch für Industrieanwendungen geeignet.

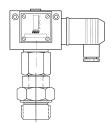
Technische Daten


Flanschabmessungen nach DIN 2527, PN 40 **Werkstoff** 1.4571

Ausführung


Komplett montiert, evakuiert, befüllt und abgeglichen M 20 lebensmittelverträglich

Füllmedium Max. zul. Druck


verträglich 40 bar (gilt nur für Trennmembrane, der max. zul. Druck des Druckschalters ist zu beachten).

ZFV185-...

ZFV162-50

ZFV749

Lieferzeit bis zu ca. 4–6 Wochen, je nach zugehörigem Druckschalter.

Typenübersicht

Flanschdruckmittler aus Edelstahl 1.4571, Membrane frontbündig, Flansch nach DIN 2527, PN 40

Туре	DN	Druckbereiche** Druck- schalter ab	Temperatur- Bereich* (Füllmedium)		
ZFV184-50	50	0,3 bar	-40120 °C		
ZFV184-80	80	0,15 bar	-40120 °C		
mit Teflonbeschich	mit Teflonbeschichtung				
ZFV184-50PTFE	50	0,3 bar	-40120 °C		
ZFV184-80PTFE	80	0,15 bar	-40120 °C		

Flanschdruckmittler aus Edelstahl 1.4571 mit 1 m Fernleitung, Flansch nach DIN 2527, PN 40

ZFV185-50	50	0,3 bar	-30300 °C		
ZFV185-80	80	0,15 bar	-30300 °C		
mit Teflonbeschi	chtung				
ZFV185-50PTFI	E 50	0,3 bar	-30300 °C		
ZFV185-80PTFI	E 80	0,15 bar	-30300 °C		
Fernleitung bis m	Fernleitung bis max. 10 m auf Anfrage.				

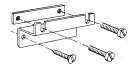
Druckmittler aus Edelstahl 1.4571 für die Nahrungsmittelindustrie mit Milchrohranschluss nach DIN 11 851

Туре	DN	Druckbereiche** Druck- schalter ab	Temperatur- Bereich* (Füllmedium)
ZFV162-50	50	0,4 bar	-30120 °C
mit Teflonbeschichtu	ing		
ZFV162-50PTFE	50	0,4 bar	-30120 °C

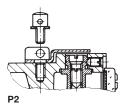
Druckmittler in Varivent- oder Triclamp-Ausführung auf Anfrage.

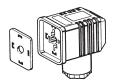
Einschraubdruckmittler

aus Edelstahl 1.4571 Frontbündig.


Туре	DN	Druckbereiche** Druck- schalter ab	Temperatur- Bereich* (Füllmedium)
ZFV 749	G 1	0,5 bar	-30120 °C
ZFV749-V191	G 1 mit Kühlstück	0,5 bar	-30120 °C

- * Es ist zu beachten, dass die Temperatur am Druckschalter auf Dauer 60 °C nicht überschritten wird.
- ** Nur verwendbar für Druckbereiche ≥ den in der Tabelle genannten Werten.




Druckschalter

für Thermostate und Druckwächter

H1

ST5

Туре

H1 Wandbefestigung

einschließlich Befestigungsschrauben und Dübel (Ø 6 mm) Bei Thermostaten der Typen TRM serienmäßig enthalten. Passend für alle Schaltgeräte der Serie 200 und 300.

P2 Plombiereinrichtung

bestehend aus Abdeckplatte und Kreuzlochschraube zur Abdeckung und Plombierung der Einstellschrauben. Nur für Schaltgerät 200 (Steckanschluss) geeignet.

WLP1 Wärmeleitpaste

zur Verbesserung des Wärmübergangs z. B. bei Anlegethermostaten. Ca. 1,5 cm³ in handlicher Dosiereinrichtung.

R4 Kapillarrohrdurchführung

für 3 mm Kapillarrohr (nicht druckdicht). Einschraubgewinde G 1/2. Passend für alle TAM.

R5 Kapillarrohrdurchführung

Gummistopfen für 3 mm Kapillarrohr. Bohrungsdurchmesser 10 mm. Nicht druckdicht (5 Stück in Beutel verpackt). Passend für alle TAM.

ST5 Ersatzstecker nach ISO 4400

für Schaltgeräte Serie 200, mit Dichtung und Befestigungsschraube, 3-polig + Schutzkontakt.

ST218 Anschlussstecker mit Stellungsanzeige durch Leuchtdioden

Betriebsspannung: 12-240 V AC/DC

Betriebsstrom: max. 2 A

Stromaufnahme für LED: max. 10 mA

LED-Anzeige: grün, wenn Spannung an Kontakt 1 vorhanden ist.

rot, wenn Spannung an Kontakt 2 vorhanden ist.

Stecker drehbar 270°, in 45°-Schritten einrastend

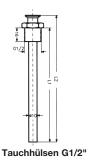
Anschlussleitungen: 1,5 mm² (feindrähtig)

Schutzart: IP 65

Umgebungstemperatur: 0-60 °C

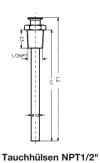
Geeignet für Druck- und Temperaturschalter der Reihe 200 (Steckanschluss),

die mit Mikroschalter ausgestattet sind (Normalausführung).

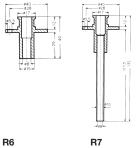


ZT

Tauchhülsen


für Thermostate und Temperaturtransmitter

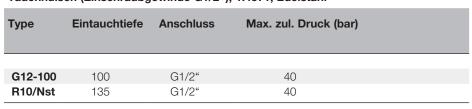
Туре	Tauchtiefe L¹(mm)	Gesamtlänge L²(mm)	Geeignet für

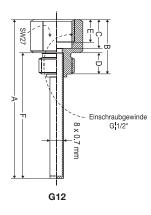

Messingausführung vernickelt, G 1/2", Max. zul. Druck: 25 bar				
R1/Ms	135	151	TAM	
R2/Ms	220	236		
R10/Ms	135	151	TX	
R20/Ms	220	236		

Nirostahlausführung (1.4404 + 1.4401) G 1/2", Max. zul. Druck: 63 bar R1/Nst 135 151 TAM... R2/Nst 220 236 R10/Nst 135 151 TX... R20/Nst 220 236

Messingausfüh	rung vernicke	lt 1/2" NPT,	Max. zul. Druck: 25 bar	
RN1/Ms	135	151	TAM	
RN2/Ms	220	236		
RN10/Ms	135	151	тх	
RN20/Ms	220	236		

Nirostahlausfüh	rung (1.4404	+ 1.4401)	1/2" NPT, Max. zul. Druck: 63 bar
RN1/Nst	135	151	TAM
RN2/Nst	220	236	
RN10/Nst	135	151	тх
RN20/Nst	220	236	




Tauchhülsen mit Befestigungsflansch für Luftkanäle

Туре	Eintauchtiefe des Fühlers	Geeignet für	
Werkstoff: Stal	hl, chromatiert		
R6	135 mm	TX	
R7	220 mm		

Tauchhülsen (Einschraubgewinde G1/2"), 1.4571, Edelstahl

Nicht mehr verfügba	re Artikel	Nachfolgeartikel		Kommentar
Туре	Bereich	Туре	Bereich	
AB10	G3/8"	kein Nachfolgeartikel		
AB13	G1/2"	•		
		kein Nachfolgeartikel		
B20	G3/4"	kein Nachfolgeartikel		
NB25	G1"	kein Nachfolgeartikel		
NB32	G11/4"	kein Nachfolgeartikel		
AB40	G11/2"	kein Nachfolgeartikel		
AB50	G2"	kein Nachfolgeartikel		
\LF	-30+110°C	kein Nachfolgeartikel		
APT650	-200+800°C	kein Nachfolgeartikel		
APV630	-1999+1999	kein Nachfolgeartikel		
AT10	G3/8"	kein Nachfolgeartikel		
AT13	G1/2"	kein Nachfolgeartikel		
AT20	G3/4"	kein Nachfolgeartikel		
AT25	G1"	kein Nachfolgeartikel		
\T32	G11/4"	kein Nachfolgeartikel		
AT40	G11/2"	kein Nachfolgeartikel		
AT50	G2"	kein Nachfolgeartikel		
AV102MS2	G3/8"	kein Nachfolgeartikel		
AV103MS2	G1/2"	kein Nachfolgeartikel		
AV131MS2	G1/2"	kein Nachfolgeartikel		
AV201MS2	G3/4"	kein Nachfolgeartikel		
AV251MS2	G1"	kein Nachfolgeartikel		
AV252MS2	G11/4"	kein Nachfolgeartikel		
AV401MS2	G11/2"	kein Nachfolgeartikel		
AV402MS2	G2"	kein Nachfolgeartikel		
AZ21		kein Nachfolgeartikel		in Transmitter integriert
AZ31		kein Nachfolgeartikel		in Transmitter integriert
\Z321		kein Nachfolgeartikel		in Transmitter integriert
AZ331		kein Nachfolgeartikel		in Transmitter integriert
DBUM06	0,1-0,6 bar	DWR06-206	0,1-0,6 bar	in manarillo integner
DBUM1	0,2-1,6 bar	DWR1-206	0,2-1,6 bar	
DBUM18	3-18 bar	DWR16-206	3-16 bar	
	0,5-6 bar	DWR625-206	0,5-6 bar	
DBUM625 DBUM8	0,5-8 bar	DWR625-206 DWR6-206	0,5-6 bar	
DGM16A	3-16 bar	DWR16	3-16 bar	
DGM25A	4-25 bar	DWR25	4-25 bar	
DGM6A	0,7-6 bar	DWR6	0,5-6 bar	
DPS200F	20-200 Pa	DPS200	20-200 Pa	
DPS400F	40-400 Pa	DPS400	40-400 Pa	
DPS500F	20-500 Pa	DPS500	20-500 Pa	
DPS1000F	200-1000 Pa	DPS1000	200-1000 Pa	
DPS2500F	500-2500 Pa	DPS2500	500-2500 Pa	
OPT100	0-100 Pa/250Pa	DPTE100	0-100 Pa/250Pa	
DPT1000	0-1000 Pa/2500 Pa		0-1000 Pa/2500 Pa	
OPT1000D	0-1000 Pa/2500 Pa		0-1000 Pa/2500 Pa	
DPT1002	0-1000 Pa/2500 Pa		0-1000 Pa/2500 Pa	
DPT1003	0-1000 Pa/2500 Pa		0-1000 Pa/2500 Pa	
DPT1003D	0-1000 Pa/2500 Pa	DPTE1000D	0-1000 Pa/2500 Pa	
OPT100D	0-100 Pa/250Pa	DPTE100D	0-100 Pa/250Pa	
DPT102	0-100 Pa/250Pa	DPTE102	0-100 Pa/250Pa	
PT103	0-100 Pa/250Pa	DPTE100	0-100 Pa/250Pa	
PT103D	0-100 Pa/250Pa	DPTE100D	0-100 Pa/250Pa	
PT110	-100+100 Pa	DPTE100S	-100+100 Pa	
PT112	-100+100 Pa	DPTE102S	-100+100 Pa	
OPT113	-100+100 Pa	DPTE100S	-100+100 Pa	
OPT250	0-250 Pa/500Pa	DPTE250	0-250 Pa/500Pa	
OPT250D	0-250 Pa/500Pa	DPTE250D	0-250 Pa/500Pa	
OPT252	0-250 Pa/500Pa	DPTE252	0-250 Pa/500Pa	
DPT253	0-250 Pa/500Pa	DPTE250	0-250 Pa/500Pa	
DPT253D	0-250 Pa/500Pa	DPTE250D	0-250 Pa/500Pa	
J. 1200D	0-200 Fa/000Fa	DI ILLEGUD	0-200 1 a/000Fa	

Nicht mehr verfügbare		Nachfolgeartikel		Kommentar
Туре	Bereich	Туре	Bereich	
DPT500	0-500 Pa/1000Pa	DPTE500	0-500 Pa/1000Pa	
DPT500D	0-500 Pa/1000Pa	DPTE500D	0-500 Pa/1000Pa	
DPT502	0-500 Pa/1000Pa	DPTE502	0-500 Pa/1000Pa	
DPT503	0-500 Pa/1000Pa	DPTE500	0-500 Pa/1000Pa	
DPT503D	0-500 Pa/1000Pa	DPTE500D	0-500 Pa/1000Pa	
DPT52	-50+50 Pa	DPTE52S	-50+50 Pa	
DPT53	-50+50 Pa	DPTE50S	-50+50 Pa	
DPTM100	0-100 Pa/250Pa	DPTE100	0-100 Pa/250Pa	
DPTM1000	0-1000 Pa/2500 Pa	DPTE1000	0-1000 Pa/2500 Pa	
DPTM1000D	0-1000 Pa/2500 Pa	DPTE1000D	0-1000 Pa/2500 Pa	
DPTM1002	0-1000 Pa/2500 Pa	DPTE1002	0-1000 Pa/2500 Pa	
DPTM100D	0-100 Pa/250Pa	DPTE100D	0-100 Pa/250Pa	
DPTM102	0-100 Pa/250Pa	DPTE102	0-100 Pa/250Pa	
DPTM110	-100+100 Pa	DPTE100S	-100+100 Pa	
DPTM1100	-1000+1000 Pa	DPTE1000S	-1000+1000 Pa	
DPTM1100D	-1000+1000 Pa	DPTE1000SD	-1000+1000 Pa	
DPTM1102	-1000+1000 Pa	kein Nachfolgeartike	el	
DPTM110D	-100+100 Pa	DPTE100SD	-100+100 Pa	
DPTM112	-100+100 Pa	DPTE102S	-100+100 Pa	
DPTM250	0-250 Pa/500Pa	DPTE250	0-250 Pa/500Pa	
DPTM250D	0-250 Pa/500Pa	DPTE250D	0-250 Pa/500Pa	
DPTM252	0-250 Pa/500Pa	DPTE252	0-250 Pa/500Pa	
DPTM50	-50+50 Pa	DPTE50S	-50+50 Pa	
DPTM500	0-500 Pa/1000Pa	DPTE500	0-500 Pa/1000Pa	
DPTM5000	0-5000 Pa/10000Pa	DPTE5000	0-5000 Pa/10000Pa	
DPTM5000D	0-5000 Pa/10000Pa	DPTE5000D	0-5000 Pa/10000Pa	
DPTM5002	0-5000 Pa/10000Pa	DPTE5002	0-5000 Pa/10000Pa	
DPTM500D	0-500 Pa/1000Pa	DPTE500D	0-500 Pa/1000Pa	
DPTM502	0-500 Pa/1000Pa	DPTE502	0-500 Pa/1000Pa	
DPTM50D	-50+50 Pa	DPTE50SD	-50+50 Pa	
DPTM52	-50+50 Pa	DPTE52S	-50+50 Pa	
DPTM550	-500+500 Pa	DPTE500S	-500+500 Pa	
DPTM550D	-500+500 Pa	DPTE500SD	-500+500 Pa	
DPTM552	-500+500 Pa	kein Nachfolgeartike		
DNA10	1-10 bar	DWR6/ DWR16	0,5-6 bar/3-16 bar	
DNA16	3-16 bar	DWR16	3-16 bar	
DNA25	4-25 bar	DWR25	4-25 bar	
DNA3	0,2-2,5 bar	DWR3	0,2-2,5 bar	
DNA6	0,5-6 bar	DWR6	0,5-6 bar	
DWUM18	3-18 bar	DWR16	3-16 bar	
DWUM625	0,5-6 bar	DWR625	0,5-6 bar	
DWUM8	0,5-8 bar	DWR6/DWR16	0,5-6 bar/3-16 bar	
EM310		kein Nachfolgeartike		
EM320		kein Nachfolgeartike		
EMS10		kein Nachfolgeartike		
Ex-FT015 Ex-FTB015		kein Nachfolgeartike		
	90 12000	kein Nachfolgeartike		mit Toughhilles D1/
EX-TX813	80130°C	EX-TAM813	80130°C	mit Tauchhülse R1/
EX-TXB813	80130°C	EX-TAM813	80130°C	mit Tauchhülse R2/
FA025+ED1	0-0,25 bar	PSTM250RG12S-R	0-0,25 bar	
EAGE, ED1	0.05 bor	+ST12-5-A	0.06 bor/0.1 bor	über Anzeige C.O.E. ber einstellber
FA05+ED1	0-0,5 bar	PSTM600RG12S-R +ST12-5-A/ PTHRB0	0-0,6 bar/0-1 bar	über Anzeige 0-0,5 bar einstellbar
EA1.ED1	0.1 bar			
FA1+ED1	0-1 bar	PTHRB0011V3	0-1 bar	
FA10+ED1	0-10 bar	PTHRB0101V3	0-10 bar	
FA25+ED1	0-25 bar	PTHRB0251V3	0-25 bar	übor Anzoiga 0.2.5 bar sinatallhar
FA3+ED1	0-2,5 bar	PTHRB0041V3	0-4 bar	über Anzeige 0-2,5 bar einstellbar
FA5+ED1	0-5 bar	PTHRB0101V3	0-10 bar	über Anzeige 0-5 bar einstellbar
FHBN05+ED1	0-0,5 bar	PTHDB0012V3	0-1 bar	über Anzeige 0-0,5 bar einstellbar
FHBN05+ED3	0-0,5 bar	PTHDB0012V3	0-1 bar	über Anzeige 0-0,5 bar einstellbar

Nicht mehr verfügbar Type	e Artikel Bereich	Nachfolgeartikel Type	Bereich	Kommentar
7 1				
FHBN1+ED3	0-1 bar	PTHDB0012V3	0-1 bar	
FHBN10+ED1	0-10 bar	PTHDB0202V3	0-20 bar	über Anzeige 0-10 bar einstellbar
FHBN10+ED3	0-10 bar	PTHDB0202V3	0-20 bar	über Anzeige 0-10 bar einstellbar
FHBN3+ED1	0-2,5 bar	PTHDB0032V3	0-3 bar	über Anzeige 0-2,5 bar einstellbar
FHBN3+ED3	0-2,5 bar	PTHDB0032V3	0-3 bar	über Anzeige 0-2,5 bar einstellbar
FHBN5+ED1	0-5 bar	PTHDB0062V3	0-6 bar	über Anzeige 0-5 bar einstellbar
FHBN5+ED3	0-5 bar	PTHDB0062V3	0-6 bar	über Anzeige 0-5 bar einstellbar
FN025+ED1	0-0,25 bar	PSTM250RG12S-R	0-0,25 bar	aso, i i zoige e e sai en istemai
THOLOTEDT	0 0,20 001	+ST12-5-A	0 0,20 001	
FN05+ED1	0-0,5 bar	PSTM600RG12S-R	0-0,6 bar/0-1 bar	über Anzeige 0-0,5 bar einstellbar
LINO2+ED I	0-0,5 Dai	+ST12-5-A/ PTHRB0		uber Arizeige 0-0,5 bar einstellbar
FN4 . FD4	0.4			
FN1+ED1	0-1 bar	PTHRB0011V3	0-1 bar	
FN10+ED1	0-10 bar	PTHRB0101V3	0-10 bar	
FN25+ED1	0-25 bar	PTHRB0251V3	0-25 bar	
FN3+ED1	0-2,5 bar	PTHRB0041V3	0-4 bar	über Anzeige 0-2,5 bar einstellbar
FN40+ED1	0-40 bar	PTHRB0401V3	0-40 bar	
FN5+ED1	0-5 bar	PTHRB0101V3	0-10 bar	über Anzeige 0-5 bar einstellbar
FN505+ED1	0-50 mbar	kein Nachfolgeartik	el	
FN510+ED1	0-100 mbar	kein Nachfolgeartike		
FT015	4-15°C	FT6961-60	-8+8°C	
	4-10 0	FT6960-18	-0+0 U	
FT6960-18F		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
FT6960-30F		FT6960-30		
FT6960-60F		FT6960-60		
FT6961-18F		FT6961-18		
FT6961-30F		FT6961-30		
FT6961-60F		FT6961-60		
FTB015	4-15°C	FT6961-30	-8+8°C	
FTS015	5-10°C, SP: 4°C	FTSE60		
FTSB015	5-10°C, SP: 4°C	FTSE20 oder FTSE6	0	
FVN105+ED1	-1+5 bar	kein Nachfolgeartik		
FVN111+ED1	-10 bar	PTHRV1011V3	-1+1 bar	über Anzeige 1 Ober einstellber
				über Anzeige -10 bar einstellbar
FVN112+ED1	-1+1 bar	PTHRV1011V4	-1+1 bar	
FVN125+ED1	-0,25+0,25 bar	kein Nachfolgeartik		
G31		kein Nachfolgeartik		
GB12	G1/2"	kein Nachfolgeartik		
GB12VA	G1/2"	kein Nachfolgeartik	el	
GB20	G3/4"	kein Nachfolgeartik	el	
GB20VA	G3/4"	kein Nachfolgeartik	el	
GB25	G1"	kein Nachfolgeartik	el	
GB25VA	G1"	kein Nachfolgeartik		
GK13	G1/2"	kein Nachfolgeartik		
GK20	G3/4"	kein Nachfolgeartik		
GK25	G1"	kein Nachfolgeartik		
GK25F	DN25	kein Nachfolgeartik		
GK32	G11/2"	kein Nachfolgeartik	el	
GK32F	DN32	kein Nachfolgeartik	el	
GK40	G11/2"	kein Nachfolgeartike	el	
GK40F	DN40	kein Nachfolgeartik	el	
GK50	G2"	kein Nachfolgeartik		
GK50F	DN50	kein Nachfolgeartik		
GS	DINOU	kein Nachfolgeartik		
		-		
GT4		kein Nachfolgeartik		
K (Magnetventile)		kein Nachfolgeartik		
KF	-30+150°C	kein Nachfolgeartik		
L(Magnetventile)		kein Nachfolgeartike	el	
LMS31		kein Nachfolgeartik	el	
LMT30	0+30°C	kein Nachfolgeartik		
MCP1		kein Nachfolgeartik		
PD		kein Nachfolgeartik		
PI30		kein Nachfolgeartik		
	0 6 har	_	υ ι	
PTE006BGG23B	0 6 bar	PTI6		

Nicht mehr verfügbare	Artikel	Nachfolgeartikel		Kommentar
Type	Bereich	Туре	Bereich	
PTE010BGG23B	0 10 bar	PTI10		
PTE016BGG23B	0 16 bar	PTI16		
PTE025BGG23B	0 25 bar	PTI25		
PTE040BGG23B	0 40 bar	PTI40		
PZ(TempTransmitt	ter)	kein Nachfolgeartikel		
RA31		kein Nachfolgeartikel		
SB(Drucktransmitter)	kein Nachfolgeartikel		
SD(Drucktransmitter	-	kein Nachfolgeartikel		
SK10	0-200Pa/500Pa/1000Pa	DPTE250 oder DPTE500	0-250Pa//500 Pa/1000Pa	
SK10-AK	0-200Pa/500Pa/1000Pa	DPTE250D oder DPTE500D	0-250Pa//500 Pa/1000Pa	
SK20	0-400Pa/1000Pa/2000Pa	DPTE500 oder DPTE1000	0-500 Pa/1000Pa/2500Pa	
SK20-AK	0-400Pa/1000Pa/2000Pa	DPTE500D oder DPTE1000E	0-500 Pa/1000Pa/2500Pa	
SK5	0-200Pa/500Pa/1000Pa	DPTE250 oder DPTE500	0-250Pa//500 Pa/1000Pa	
SK5-AK	0-200Pa/500Pa/1000Pa	DPTE250D oder DPTE500D	0-250Pa//500 Pa/1000Pa	
SKV10	-1000+1000 Pa	DPTE1000S	-1000+1000 Pa	
SKV10-AK	-1000+1000 Pa	DPTE1000SD	-1000+1000 Pa	
SKV5	-500+500 Pa	DPTE500S	-500+500 Pa	
SKV5-AK	-500+500 Pa	DPTE500SD	-500+500 Pa	
SL10-2	0-1000 Pa	DPTE1002	0-1000 Pa/2500 Pa	
SL10-3	0-1000 Pa	DPTE1000	0-1000 Pa/2500 Pa	
SL20-2	0-2000 Pa	DPTE1002	0-1000 Pa/2500 Pa	
SL20-3	0-2000 Pa	DPTE1000	0-1000 Pa/2500 Pa	
SL50-2	0-5000 Pa	DPTE5002	0-5000 Pa/10000Pa	
SL50-3	0-5000 Pa	DPTE5000	0-5000 Pa/10000Pa	
SL5-2	0-500 Pa	DPTE502	0-500 Pa/1000Pa	
SL5-3	0-500 Pa	DPTE500	0-500 Pa/1000Pa	
SN025-280	0-0,25 bar	kein Nachfolgeartikel	0 0001 a/10001 a	
SN025-200 SN025-311	0-0,25 bar	PSTM250RG12S-R	0-0,25 bar	
314023-311	0-0,23 bai	+ST12-5-A	0-0,23 Dai	
SN025-395	0-0,25 bar	PSTM250RG12S-R	0-0,25 bar	
		+ST12-5-A		
SN06-280	0-0,6 bar	PTHRB0011A2	0-1 bar	über Anzeige 0-0,6 bar einstellba
SN06-311	0-0,6 bar	PTHRB0011V3	0-1 bar	über Anzeige 0-0,6 bar einstellba
SN06-395	0-0,6 bar	PTHRB0011V3	0-1 bar	über Anzeige 0-0,6 bar einstellba
SN10-280	0-10 bar	PTHRB0101A2	0-10 bar	
SN10-311	0-10 bar	PTHRB0101V3	0-10 bar	
SN10-395	0-10 bar	PTHRB0101V3	0-10 bar	
SN1-280	0-1 bar	PTHRB0011A2	0-1 bar	
SN1-311	0-1 bar	PTHRB0011V3	0-1 bar	
SN1-395	0-1 bar	PTHRB0011V3	0-1 bar	
SN16-280	0-16 bar	PTHRB0161A2	0-16 bar	
SN2-280	0-1,6 bar	PTHRB0041A2	0-4 bar	über Anzeige 0-2 bar einstellbar
SN25-280	0-25 bar	PTHRB0251A2	0-25 bar	
SN25-311	0-25 bar	PTHRB0251V3	0-25 bar	
SN25-395	0-25 bar	PTHRB0251V3	0-25 bar	
SN3-280	0-2,5 bar	PTHRB0041A2	0-4 bar	über Anzeige 0-2,5 bar einstellba
SN3-311	0-2,5 bar	PTHRB0041V3	0-4 bar	über Anzeige 0-2,5 bar einstellba
SN3-395	0-2,5 bar	PTHRB0041V3	0-4 bar	über Anzeige 0-2,5 bar einstellba
SN4-280	0-4 bar	PTHRB0041A2	0-4 bar	
SN40-280	0-40 bar	PTHRB0401A2	0-40 bar	
SN40-311	0-40 bar	PTHRB0401V3	0-40 bar	
SN40-395	0-40 bar	PTHRB0401V3	0-40 bar	
SN6-280	0-6 bar	PTHRB0101A2	0-10 bar	über Anzeige 0-6 bar einstellbar
SN6-311	0-6 bar	PTHRB0101V3	0-10 bar	über Anzeige 0-6 bar einstellbar
SN6-395	0-6 bar	PTHRB0101V3	0-10 bar	über Anzeige 0-6 bar einstellbar
SR(Drucktransmitter		kein Nachfolgeartikel	5 10 KM	ass. 7 a resign of or ball officionball
ST221	1	kein Nachfolgeartikel		
STW1F	20150°C	STW1	20150°C	
		STW2080		
STW2080F	2080°C 70130°C	STW2080 STW70130	2080°C 70130°C	
STW70130F	70130°C 20150°C	STW+TR	20150°C	
STW+TRF		> (VV + 1 B)	ZU 10U*U	

Nicht mehr verfüg	bare Artikel	Nachfolgeartikel		Kommentar
Туре	Bereich	Туре	Bereich	
STB1F	60130°C	STB	60130°C	
STB2080F	2080°C	STB2080	2080°C	
STB70130F	70130°C	STB70130	70130°C	
STB+TWF	30110°C	STB+TW	30110°C	
STB+TRF	30110°C	STB+TR	30110°C	
STG12-100F		STG12-100		
T (Kolben-Magn	etventile)	kein Nachfolgeartikel		
T4NSTF		T4NST		
T5NSTF		T5NST		
T6950A1000	-10+12°C	FT6960-18	-8+8°C	
T6950A1018	-10+12°C	FT6960-30	-8+8°C	
T6950A1026	-10+12°C	FT6960-60	-8+8°C	
T6951A1009	-10+12°C	FT6961-18	-8+8°C	
T6951A1017	-10+12°C	FT6961-30	-8+8°C	
T6951A1025	-10+12°C	FT6961-60	-8+8°C	
T6960A1008	-10+12°C	FT6960-18	-8+8°C	
T6960A1016	-10+12°C	FT6960-30	-8+8°C	
T6960A1024	-10+12°C	FT6960-60	-8+8°C	
T6961A1007	-10+12°C	FT6961-18	-8+8°C	
T6961A1015	-10+12°C	FT6961-30	-8+8°C	
T6961A1023	-10+12°C	FT6961-60	-8+8°C	
TF	-10+150°C	kein Nachfolgeartikel		
TLM		TX + R6		
TLMB		TXB + R7		
TNM		TX + R10/Nst		
TNMB		TXB + R20/Nst		
TP21-55	-50+50°C	kein Nachfolgeartikel		
TP21-150	-50+150°C	kein Nachfolgeartikel		
TP3-55	-50+50°C	kein Nachfolgeartikel		
TP3-100	0+ 100°C	kein Nachfolgeartikel		
TP3-150	-50+150°C	kein Nachfolgeartikel		
TSP		kein Nachfolgeartikel		
TSS		kein Nachfolgeartikel		
TX813	80130°C	TAM813	80130°C	mit Tauchhülse R1/
TXB813	80130°C	TAM813	80130°C	mit Tauchhülse R2/
TXM		TX + R10/Ms		
TXMB		TXB + R20/Ms		
UDI		kein Nachfolgeartikel		

Allgemeine Geschäftsbedingungen (AGB) der Honeywell GmbH für Deutschland Stand: März 2017

1. Allgemeines

- 1.1 Für alle Lieferungen und Leistungen des Verkäufers gelten für die Dauer der Geschäftsverbindung, also auch ohne erneute ausdrückliche Vereinbarung für künttige Aufträge, ausschließlich die nachstehenden Bedingungen, soweit zwischen den Parteien keine anderweitige schriftliche Vereinbarung getroffen wird. Gegenbestätigungen des Bestellers unter Verweis auf seine Geschäftsbedingungen wird hiermit bereits widersprochen.
- 1.2 Die Geschäftsbedingungen gelten nur gegenüber Unternehmern, juristischen Personen des öffentlichen Rechts oder öffentlich-rechtlichen Sondervermögens.

2. Angebote, Aufträge

- 2.1 Alle Angebote des Verkäufers sind freibleibend. Ein rechtsverbindlicher Vertrag kommt erst mit schriftlicher, fernschriftlicher, per Telefax oder per E-Mail erteilter Auftragsbestätigung des Verkäufers zustande. Dies gilt auch für durch Vertreter entgegen genommene Aufträge sowie für Auftragserteilung per Telefon oder Fax und Auftragsänderungen durch den Besteller.
- 2.2 Inhalt und Umfang der getroffenen Vereinbarungen richten sich nach der schriftlichen Auftragsbestätigung des Verkäufers. Bei Vertragsschluss getroffene mündli che Nebenabreden sind für den Verkäufer nur dann verbindlich, wenn er sie ausdrücklich schriftlich bestätigt hat.
- 2.3 Der Verkäufer behält sich technische Änderungen in Konstruktion, Form und Material, auch während der Lieferzeit vor, soweit diese Änderungen dem Besteller zumutbar sind. Angaben in Angeboten sowie in beigefügten Zeichnungen und Abbildungen über die Leistung, deren Maße und Gewichte sind nur annähernd maßgebend, soweit sie nicht ausdrücklich als verbindlich bezeichnet sind.
- 2.4 An Kostenvoranschlägen, Zeichnungen und anderen Unterlagen behält sich der Verkäufer Eigentums- und Urheberrechte vor. Diese Unterlagen dürfen Dritten nicht zugänglich gemacht werden und sind auf Verlangen unverzüglich zurückzugeben, wenn en Auftrag nicht erteilt wird. Die zwecks Abgabe eines Kostenvoranschlages erbrachten Leistungen und Lieferungen besonderer Art (z.B. Reisen, etc.), werden dem Besteller auch dann berechnet, wenn es nicht oder nur in abgeänderter Form zur Ausführung der vorgesehe nen Leistungen kommt.

3. Lieferung, Lieferfrist, Verzug

- 3.1 Lieferungen erfolgen, wenn nichts anderes vereinbart ist, ab Werk oder Lager auf Rechnung und Gefahr des Bestellers. Eine Transportversicherung wird nur auf Verlangen des Bestellers und dann auf dessen Rechnung abgeschlossen. Die Versandart ist dem Verkäufer freigestellt, sofern nichts anderes vereinbart ist.
- 3.2 Der Verkäufer behält sich in begründeten Ausnahmefällen das Recht zu Teillieferungen unter Berücksichtigung der Interessen des Bestellers und nach vorheriger Ankündigung
- 3.3 Wird die Verladung oder Bef\u00f6rderung der Ware auf Wunsch oder durch Verschulden des Bestellers verz\u00f6gert, ist der Verk\u00e4ufer berechtigt, auf Kosten und Gefahr des Bestellers, die Ware nach billigem Ermessen einzulagern, alle zur Erhaltung der Ware f\u00fcr geeignet erachteten Ma\u00dfnahmen zu treffen und die Ware als geliefert in Rechnung zu stellen. Dasselbe gilt nach Meldung der Versandbereitschaft, sofern die Ware nicht innerhalb von vier Werktagen abgerufen wird.
- 3.4 Vom Verkäufer angegebene Lieferfristen sind nur dann verbindlich, wenn sie ausdrücklich schriftlich vereinbart wurden.
- 3.5 Die Einhaltung vereinbarter Termine oder Fristen für Lieferungen setzt den rechtzeitigen Eingang sämtlicher vom Besteller zu liefernden Unterlagen, einschließlich erforderlicher Genehmigungen und Freigaben, sowie die Einhaltung der vereinbarten Zahlungsbedingungen und sonstigen Verpflichtungen voraus. Werden diese Voraussetzungen nicht rechtzeitig erfüllt, so verlängern sich die Fristen angemessen. Dies gilt nicht, wenn der Verkäufer die Verzögerung zu vertreten hat.
- 3.6 Der Verkäufer kann bei nachträglichen Änderungen des Auftrags auf Wunsch des Bestellers eine angemessene Verlängerung der Lieferfrist verlangen. Die hierdurch entstehenden Mehrkosten hat der Besteller zu tragen.
- 3.7 Gerät der Verkäufer in Liefer- bzw. Leistungsverzug, so hat der Besteller eine angemessene Nachfrist von mindestens 20 Werktagen zu setzen. Die Nachfrist ist zu verbinden mit der Erklärung, dass der Besteller die Annahme der Lieferung oder Leistung nach ergebnisiosem Ablauf der Frist ablehnt. Liefert bzw. leistet der Verkäufer nicht innerhalb dieser Nachfrist, so ist der Besteller zum Rücktritt vom Vertrag berechtigt. Weitergehende Ansprüche des Bestellers sind, außer im Fall von Vorsatz oder grober Fahrlässigkeit, ausgeschlossen.
- 3.8 Liefer- und Leistungsverzögerungen auf Grund höherer Gewalt oder anderer unvorherge sehener und unverschuldeter Ereignisse, die die Lieferung oder Leistung nicht nur vorü bergehend wesentlich erschweren oder unmöglich machen (z. B. Betriebsstörungen, Streik, Aussperrung, Mangel an Transportmitteln, behördliche Eingriffe, Materialbeschaffungs- oder Energieversorgungsschwierigkeiten), auch wenn sie bei Lieferanten des Verkäufers oder deren Unterlieferanten eintreten, hat der Verkäufer auch bei verbindlich vereinbarten Lieferterminen nicht zu vertreten. In diesen Fällen ist der Verkäufer berechtigt, entweder den Liefertermin bzw. die Leistungserfüllung um die Dauer der Hindernisse zu verlängern oder vom Vertrag zurückzutreten, und zwar auch dann, wenn das Hindernis während eines bereits vorliegenden Verzugs eintritt. Beginn und Ende derartiger Hindernisse wird der Verkäufer dem Besteller unverzüglich mitteilen. Schadensersatzansprüche, aus welchem Rechtsgrund auch immer, sind im Falle höherer Gewalt sowie anderer unvorhersehbarer und unverschuldeter Ereignisse ausgeschlossen.

4. Preise, Zahlungsbedingungen

- 4.1 Alle Preise verstehen sich ab Werk oder Lager zuzüglich Fracht- und Verpackungskosten. Es gelten die jeweils bei Vertragsabschluss gültigen Listenpreise. Bei Bezugsverträgen, Abrufbestellungen und sonstigen Verträgen mit wiederkehrenden Leistungen gelten die jeweils am Tage der Lieferung gültigen Listenpreise.
- 4.2 Treten zwischen Vertragsabschluss und Lieferung Änderungen der Preisgrundlage ein (z.B. erhöhte Rohstoffpreise, Lohnerhöhungen) so ist der Verkäufer berechtigt, den Preis entsprechend dem Betrag der Erhöhung anzupassen. Über die Änderung wird der Verkäufer den Besteller in Kenntnis setzen. Der Verkäufer behält sich das Recht vor, bei Folgeaufträgen evtl. Preisberichtigungen vorzunehmen.
- 4.3 Preise sind Nettopreise zuzüglich der jeweiligen gesetzlichen Umsatzsteuer. Sofern nicht abweichend vereinbart, sind Kosten für das Recycling, die Wiederverwertung oder die Entsorgung nach der EG-Richtlinie 2002/95/EG (WEEE) und dem Gesetz über das Inverkehrbringen, die Rücknahme und die umweltverträgliche Entsorgung von Elektround Elektronikgeräten (ElektroG) im Preis nicht enthalten. Kleinbestellungen können mit einem angemessenen Bearbeitungsaufschlag versehen werden. Sonderwünsche des Kunden, wie z.B. Terminfrachten und Sonderverpackungen werden separat berechnet.
- 4.4 Alle Rechnungen sind innerhalb von 30 Tagen ab Rechnungsdatum netto zahlbar. Abzüge sind mangels anderer Vereinbarung unzulässig.
- 4.5 Eine Aufrechnung ist nur im Falle unbestrittener oder rechtskräftig festgestellter Gegenansprüche des Bestellers zulässig. Zurückbehaltungsrechte stehen dem Besteller nur zu, soweit sie auf demselben Vertragsverhältnis beruhen und anerkannt oder rechtskräftig festgestellt sind.
- 4.6 Schecks und Wechsel werden nur nach besonderer schriftlicher Vereinbarung erfüllungshalber angenommen. Sie gelten erst nach ihrer Einlösung als Zahlung. Diskont- und sonstige Wechselspesen sowie die Kosten der Einziehung gehen zu Lasten des Bestellers.
- 4.7 Gerät der Besteller in Zahlungsverzug oder bestehen begründete Zweifel an der Zahlungsfähigkeit oder Kreditwürdigkeit des Bestellers, ist der Verkäufer unbeschadet seiner sonstigen Rechte befugt, für noch nicht durchgeführte Lieferungen oder Leistungen Vorauszahlungen oder Sicherheitsleistung zu verlangen und sämtliche Ansprüche aus der Geschäftsverbindung sofort fällig zu stellen. Die Lieferpflichten des Verkäufers ruhen, solange der Besteller mit einer fälligen Zahlung in Verzug ist. Bei Zahlungsverzug ist der Verkäufer außerdem berechtigt, Verzugszinsen in Höhe von 8 Prozentpunkten über dem jeweiligen Basiszinssatz zu verlangen, sowie nach erfolglosem Setzen einer angemessenen Nachfrist vom Vertrag zurückzutreten und Schadensersatz wegen Nichterfüllung zu verlangen.

5. Gefahrübergang

Die Gefahr geht mit der Abnahme oder, falls keine Abnahme vorgesehen ist, mit Übergabe der Ware im Werk oder Lager von dem Verkäufer auf den Besteller über, bei Versendung sobald die Sendung an die den Transport ausführende Person übergeben worden ist oder zwecks Versendung das Werk oder das Lager des Verkäufers verlassen hat. Wird der Versand auf Wunsch oder durch Verschulden des Bestellers verzögert, geht die Gefahr mit der Meldung der Versandbereitschaft auf diesen über.

6. Abnahme, Annahmeverzug, Stornierung

- 6.1 Sehen zwingende Vorschriften eine Abnahme vor oder ist eine Abnahme vereinbart, so erfolgt diese in dem Werk oder Lager des Bestellers innerhalb von vier Werktagen nach Meldung der Fertigstellung. Die Abnahmekosten trägt der Besteller.
- 6.2 Erfolgt die Abnahme nicht rechtzeitig oder verzichtet der Besteller auf sie, ist der Verkäufer berechtigt, ohne Abnahme zu versenden oder die Ware auf Kosten und Gefahr des Bestellers einzulagern. Die Ware gilt in diesem Falle als vertragsgemäß geliefert.
- 6.3 Ist Abholung der Ware ab Werk bzw. Lager vereinbart, so kommt der Besteller in Verzug, wenn er nicht innerhalb von vier Werktagen, nachdem ihm die Versandbereitschaft ange zeigt worden ist, die Ware abruft. Mit Eintritt des Annahmeverzugs geht die Gefahr der zufälligen Verschlechterung und des zufälligen Untergangs auf den Besteller über. Zudem ist der Verkäufer berechtigt, Ersatz der durch den Annahmeverzug entstehenden Mehraufwendungen vom Besteller zu verlangen.
- 6.4 Bei Nichtabnahme der ordnungsgemäß angebotenen Ware ist der Verkäufer berechtigt, ohne besonderen Nachweis pauschal 20 % des Rechnungsbetrages als Schadensersatz wegen Nichterfüllung vom Besteller zu verlangen. Das Gleiche gilt für den Fall, dass der Besteller vor Auslieferung vom Vertrag Abstand nimmt oder unberechtigt vom Vertrag zurücktritt. Die Geltendmachung eines höheren Schadens wie auch der Nachweis feh lender oder wesentlich geringerer Kosten bleibt beiderseits vorbehalten.
- 6.5 Gegen Übernahme der gesamten Kosten unter Einschluss einer angemessenen Marge durch den Besteller wird die Ausführung des Auftrags unterbrochen. Die Rücknahme von Waren kommt abgesehen von Gewährleistungsfällen nur ausnahmsweise und nur nach vorheriger schriftlicher Vereinbarung in Betracht. Die Rücknahme von Sonderanfertigungen, lackierter sowie nicht wieder verwertbarer Teile ist ausgeschlossen. Rücknahmeanfragen, deren Netto-Warenwert vor Umsatzsteuer unter EUR 100,00 liegen, können nicht angenommen und bearbeitet werden. Aus Rücknahmen resultierende Gutschriften kön nen höchstens bis zu 80 % des Netto-Warenwertes betragen.

7. Beschaffenheit, Güte und Maße

Güte und Maße bestimmen sich nach den Spezifikationen des Verkäufers. Insbesondere öffentliche Äußerungen des Verkäufers, des Herstellers, deren Gehilfen oder Dritter enthal ten keine diese Leistungsbeschreibung ergänzenden oder verändernden Beschreibungen des Liefergegenstandes. Eine Garantie für die Beschaffenheit wird von dem Verkäufer nicht übernommen.

Software 8.

- Vorbehaltlich anderer schriftlicher Vereinbarungen dürfen Software- Programme sowie dazugehörende Dokumentation (im Folgenden: Software), die dem Besteller zur 8.1 Verfügung gestellt werden, nur zum Betrieb der vorher bestimmten und dem Verkäufer schriftlich benannten Geräte verwendet werden.
- Der Besteller erhält an der Software das nicht ausschließliche, nicht übertragbare 8.2 Benutzungsrecht. Er darf die Software ohne vorherige schriftliche Zustimmung durch den Verkäufer nicht vervielfältigen, ändern oder Dritten zugänglich machen. Diese Bestimmungen gelten auch für geänderte oder ergänzte Software. Im Falle einer Weiterveräußerung bzw. Übertragung ist der Besteller verpflichtet, dem Übernehmer die Verpflichtungen dieser Bestimmung aufzuerlegen.
- Alle Rechte, insbesondere Urheberrechte an der Software, einschließlich an Kopien der Software (soweit diese vom Verkäufer genehmigt wurden), verbleiben unbeschadet des Eigentums des Bestellers an Aufzeichnungsdatenträgern - bei dem Verkäufer
- Ergänzend zu den Bestimmungen in Ziffer 10 und 13 übernimmt der Verkäufer bei Software nur die Verpflichtung, diese nach bestem Wissen und Gewissen zu erstellen und zu pflegen. Der Verkäufer erteilt jedoch insbesondere keine Zusage hinsichtlich deren Verwendbarkeit für einen nicht ausdrücklich vereinbarten Zweck und eine unzumutbare oder über den Stand der Technik hinausgehende Fehlerbeseitigung.

9. Eigentumsvorbehalt

- Der Verkäufer behält sich das Eigentum an allen von ihm gelieferten Gegenständen vor (Vorbehaltsware), bis der Besteller alle Ansprüche aus der Geschäftsverbindung mit dem Verkäufer erfüllt hat. Der Vorbehalt erstreckt sich auch auf die durch Be- oder Verarbeitung der Vorbehaltsware entstehenden neuen Erzeugnisse. Die Verarbeitung erfolgt für den Verkäufer als Hersteller i.S.d. § 950 BGB. Bei einer Verarbeitung, Verbindung oder Vermischung mit im Eigentum Dritter stehenden Waren erwirbt der Verkäufer Mitteigentum an den neuen Erzeugnissen im Verhältnis des Rechnungswertes der Vorbehaltsware zu den Rechnungswerten der anderen Materialien. Wird die Vorbehaltsware von dem Besteller mit Grundstücken oder beweglichen Sachen verbun den, so tritt dieser, ohne dass es weiterer besonderer Erklärungen bedarf, auch seine Forderung, die ihm als Vergütung für die Verbindung zusteht, mit allen Nebenrechtensicherungshalber in Höhe des Verhältnisses des Wertes der verbundenen Vorbehaltsware zu den übrigen verbundenen Waren zum Zeitpunkt der Verbindung an den Verkäufer ab.
- Solange der Besteller bereit und in der Lage ist, seinen Verpflichtungen dem Verkäufer gegenüber ordnungsgemäß nachzukommen, darf er über die im Eigentum bzw. Miteigentum des Verkäufers stehende Ware im ordentlichen Geschäftsgang verfügen. Im Einzelnen gilt folgendes:
- Stundet der Besteller den Kaufpreis gegenüber seinen Bestellern, so hat er sich gegen über diesen das Eigentum an der veränderten Ware vorzubehalten. Ohne diesen Vorbehalt ist der Besteller zur Verfügung über die Vorbehaltsware nicht ermächtigt. Alle Forderungen aus der Veräußerung von Vorbehaltswaren tritt der Besteller einschließ a)
- Alle Forderungen aus der Veräulserung von Vorbehaltswaren tritt der Besteller einschließ lich Wechsel und Schecks zur Sicherung der Ansprüche des Verkäufers aus der Geschäftsverbindung schon jetzt an den Verkäufer ab. Bei der Veräußerung von Waren, an denen der Verkäufer Miteigentum hat, beschränkt sich die Abtretung auf den Forderungsanteil, der dem Miteigentumsanteil des Verkäufers entspricht. Bei Verarbeitung im Rahmen eines Werkvertrages wird die Werklohnforderung in Höhe des anteiligen Betrages der Rechnung des Bestellers für die mitverarbeitete Vorbehaltsware schon jetzt an den Verkäufer abgetreten. Der Besteller ist zu einer Weiterveräußerung oder sonstigen Verwendung der Vorbehaltsware nur dann ermächtigt, wenn sichergestellt ist, dass die Forderungen daraus auf den Verkäufer übergehen. Zur anderweitigen Abtretung der Forderungen ist der Besteller nicht befugt; dies gilt auch für alle Arten von Factoring-Geschäften.
- Wird die abgetretene Forderung in eine laufende Rechnung aufgenommen, so tritt der wind die abgetreite in Forderung in eine laufende Nechmang aufgenommen, so mit der Besteller bereits jetzt einen der Höhe nach dieser Forderung entsprechenden Teil des Saldos (einschließlich des entsprechenden Teils des Schlußsaldos) aus dem Kontokorrent an den Verkäufer ab. Werden Zwischensalden gezogen und ist deren Vortrag vereinbart, so ist die dem Verkäufer nach der vorstehenden Regelung aus dem Zwischensaldo zustehende Forderung für den nächsten Saldo wie an den Verkäufer abgetreten zu
- Der Besteller ist zur Einziehung der an den Verkäufer abgetretenen Forderungen ermäch tigt, solange er seine Zahlungsverpflichtungen erfüllt. Bei Zahlungsverzug ist der Verkäufer berechtigt, die Einziehungsermächtigung zu widerrufen. In diesem Fall ist der Besteller auf Verlangen des Verkäufers verpflichtet, diesem alle zur Einziehung erforderlichen Angaben zu machen, ihm die Überprüfung des Bestands der abgetretenen Forderungen durch einen Beauftragten anhand seiner Buchhaltung zu gestatten, sowie den Schuldnern die Abtretung mitzuteilen.
- Solange dem Verkäufer das Eigentum vorbehalten ist, hat der Besteller Vorbehaltsware, soweit er über sie verfügen kann, pfleglich zu behandeln und zu verwahren, sowie erfor derliche und übliche Inspektions-, Wartungs- und Erhaltungsarbeiten auf seine Kosten durchzuführen. Während der Dauer des Eigentumsvorbehalts darf der Besteller die Vorbehaltsware weder verpfänden noch zur Sicherheit übereignen. Zugriffe Dritter auf die Vorbehaltsware, etwa im Wege der Pfändung oder Beschlagnahme, sowie Beschädigungen oder die Vernichtung sind dem Verkäufer unverzüglich schriftlich oder per Telefax anzuzeigen. Dies gilt ebenso für Eingriffe Dritter in die im Voraus an den Verkäufer abgetretenen Forderungen. Der Besteller hat alle Kosten zu tragen, die zur Aufhebung des Zugriffs und zur Wiederbeschaffung der Vorbehaltsware erforderlich sind, soweit sie nicht von Dritten eingezogen werden können.
- Im Falle des Zahlungsverzugs des Bestellers, des Antrags auf Eröffnung des Insolvenzverfahrens über sein Vermögen oder des Übergangs des Geschäftsbetriebs des Bestellers auf Dritte, ist der Verkäufer berechtigt, die Vorbehaltsware zurückzunehmen und zu diesem Zweck die Geschäftsräume des Bestellers zu betreten. Die Rücknahme stellt nur dann einen Rücktritt vom Vertrag dar, wenn Verkäufer dies schriftlich erklärt. Nach Rücknahme ist der Verkäufer zur Verwertung befugt, wobei der Erlös auf die Verbindlichkeiten des Bestellers abzüglich angemessener Verwertungskosten anzurech nen ist. Entsprechendes gilt in allen anderen Fällen vertragswidrigen Verhaltens des

- Übersteigt der Schätzwert der Sicherheiten die zu sichernden Forderungen um mehr als 50 %, so wird der Verkäufer auf Verlangen des Bestellers insoweit Sicherheiten nach Wahl des Verkäufers freigeben.
- Falls der Eigentumsvorbehalt nach den im Land des Bestellers geltenden gesetzlichen Bestimmungen nicht oder nur begrenzt zulässig ist, beschränken sich die vorbezeichne 9.6 ten Rechte des Verkäufers auf den gesetzlich zulässigen Umfang.

Entsorgung von Altgeräten Bezüglich der gesetzlichen Verpflichtung nach der EG-Richtlinie 2002/95/EG (WEEE) und dem ElektroG gilt für eigenständige Elektrogeräte folgendes

- Der Besteller übernimmt die Pflicht, die gelieferte Ware nach Nutzungsbeendigung auf eigene Kosten nach den gesetzlichen Vorschriften ordnungsgemäß zu entsorgen. Der Besteller stellt den Verkäufer von den Verpflichtungen nach § 10 Abs. 2 ElektroG (Rücknahmepflicht der Hersteller) und damit in Zusammenhang stehenden Ansprüchen
- Der Verkäufer kann, nach eigenem freiem Ermessen, auf Kosten des Bestellers die gelieferte Ware nach Nutzungsbeendigung zurücknehmen und wird diese dann nach den gesetzlichen Vorschriften ordnungsgemäß entsorgen. Ausgeschlachtete Altgeräte werden in keinem Fall durch den Verkäufer zurückgenommen.
- Der Besteller hat gewerbliche Dritte, an welche er die gelieferte Ware weitergibt, vertraglich dazu zu verpflichten, die gelieferte Ware nach Nutzungsbeendigung auf deren Kosten nach den gesetzlichen Vorschriften ordnungsgemäß zu entsorgen und für den Fall der erneuten Weitergabe eine entsprechende Weiterverpflichtung aufzuerlegen. Unterlässt es der Besteller, Dritte, an welche er die gelieferte Ware weitergibt, vertraglich zur Übernahme der Entsorgungspflicht und zur Weiterverpflichtung zu verpflichten, so ist der Besteller verpflichtet, die gelieferte Ware nach Nutzungsbeendigung auf seine Kosten zurückzunehmen und nach den gesetzlichen Vorschriften ordnungsgemäß zu entsorgen.
- Der Anspruch des Verkäufers auf Übernahme/Freistellung durch den Besteller verjährt nicht vor Ablauf von zwei Jahren nach der endgültigen Beendigung der Nutzung des

Mängelrüge, Rechte des Bestellers bei Mängeln

- Mängelansprüche des Bestellers bestehen beim Kauf von Waren nur dann, wenn der Besteller seine Untersuchungs- und Rügepflichten nach § 377 HGB ordnungsgemäß erfüllt hat. Der Besteller hat die empfangene Ware unverzüglich nach Eintreffen auf Mängel, Beschaffenheit und garantierte Eigenschaften zu untersuchen. Offensichtliche Mängel hat er innerhalb von 10 Werktagen nach Eingang der Lieferung, versteckte Mängel innerhalb von 10 Werktagen nach Entdeckung durch schriftliche Anzeige an den Verkäufer zu rügen. Anderenfalls gilt die Lieferung als genehmigt.
- Der Besteller kann die folgenden Rechte nur geltend machen, wenn der Verkäufer innerhalb der Verjährungsfrist schriftlich über den Mangel benachrichtigt worden und ihm die Ware auf Verlangen unverzüglich und frachtfrei zur Verfügung gestellt worden ist. Stellt sich die Mängelrüge in einem solchen Fall als berechtigt heraus, trägt der Verkäufer die Kosten der frachtgünstigsten Rücksendung.
- Bei berechtigten und rechtzeitigen Mängelrügen erfolgt die Nacherfüllung nach Wahl des Verkäufers durch Mängelbeseitigung oder Ersatzlieferung. Im Falle der Mängelbeseitigung entscheidet der Verkäufer, ob diese durch Reparatur oder Austausch von defekten Teilen
- Der Verkäufer ist zur mehrfachen Nacherfüllung berechtigt. Ein Fehlschlagen der Nacherfüllung ist erst nach erfolglosem zweitem Versuch gegeben. Falls der Verkäufer den Mangel nicht innerhalb angemessener Zeit beseitigt oder die Nacherfüllung fehlge schlagen ist, kann der Besteller nach seiner Wahl vom Vertrag zurück treten oder die Vergütung angemessen herabsetzen (mindern).
- Bei unberechtigten Mängelrügen, die eine umfangreiche Nachprüfung verursacht haben, können die Kosten der Nachprüfung dem Besteller in Rechnung gestellt werden. Infolge der Verbringung an einen anderen Ort als den Erfüllungsort trägt der Besteller die erhöh ten Nacherfüllungskosten, es sei denn, die Verbringung entspricht dem bestimmungsge mäßen Gebrauch.
- 11.6 Die Verjährungsfrist für Mängelansprüche beträgt 24 Monate ab Gefahrübergang.
- Der Verkäufer haftet nicht aufgrund öffentlicher Äußerungen in seiner Werbung oder der Werbung eines sonstigen Herstellers der gelieferten Waren oder dessen Gehilfen, wenn und soweit der Besteller nicht nachweisen kann, dass die Werbeaussagen seine Kaufentscheidung beeinflusst haben, wenn der Verkäufer die Äußerungen nicht kannte und nicht kennen musste oder die Aussagen im Zeitpunkt der Kaufentscheidung bereits berichtigt war.
- 11.8 Jegliche M\u00e4ngelanspr\u00fcche sind ausgeschlossen, wenn die Ware entgegen den Bedienungsanleitungen oder Anweisungen des Verk\u00e4ufers oder sonst unsachgem\u00e4\u00df
 installiert, gebraucht oder gelagert oder nicht vertragsgem\u00e4\u00df
 genutzt wird oder wenn ohne Zustimmung des Verk\u00e4ufers vom Bestellern oder von Dritten an der Ware oder Teilen davon Wartungen, Reparaturen, \u00e4nderungen oder Modifikationen vorgenommen werden, es sei denn, der Besteller weist nach, dass diese Umstände nicht ursächlich für den gerügten Mangel sind.
- Beim Verkauf von gebrauchten Waren, Waren zweiter Wahl sowie beim Verkauf von deklassierten Waren und beim Verkauf "wie besichtigt" ist jegliche Haftung für Sachmängel ausgeschlossen. Entsprechendes gilt beim Verkauf von Prototypen.
- 11.10 Die vorstehenden Anspruchsbeschränkungen gelten nicht, wenn der Verkäufer eine Garantie für die Beschaffenheit der Ware übernommen oder den Mangel arglistig ver schwiegen hat.

11.11 Beim Verkauf von neu hergestellten Waren findet in Fällen des Unternehmerrückgriffs des Bestellers gegen den Verkäufer nach erfolgreicher Minderung oder Rückgabe durch einen Verbraucher § 478 BGB mit der Maßgabe Anwendung, dass der Verkäufer im Falle einer Minderung durch den Verbraucher nur die Minderungsquote übernimmt, die im Verhältnis zwischen dem Besteller und dem Verbraucher oder einem weiteren Zwischenhändler angewendet wurde.

12. Gewerbliche Schutzrechte

- 12.1 Über die für bestimmungsgemäße und vertragliche Benutzung der gelieferten Ware erforderlichen Nutzungsrechte hinaus erwirbt der Besteller keine Ansprüche auf Benutzung der gewerblichen Schutzrechte des Verkäufers.
- 12.2 Eine Haftung für die Verletzung von gewerblichen Schutzrechten Dritter setzt in jedem Falle eine unverzügliche Unterrichtung des Verkäufers über Ansprüche Dritter voraus und ist ausgeschlossen bei Unterlassen oder wenn der Besteller rechtliche Schritte ohne das schriftliche Einverständnis des Verkäufers unternimmt oder unterlässt.
- 12.3 Eine Haftung des Verkäufers tritt nicht ein, soweit Schutzrechtsverletzungen auf Änderungen an der gelieferten Ware, auf dem Einbau von zusätzlichen Einrichtungen oder auf der Verbindung der gelieferten Ware mit anderen Geräten oder Vorrichtungen durch den Besteller beruhen. Die Haftung entfällt außerdem bei nicht bestimmungsgemäßer Verwendung.
- 12.4 Der Verkäufer ist von jeder Haftung infolge einer Schutzrechtsverletzung frei, wenn die gelieferte Ware nach Zeichnungen, Modellen oder sonstigen Angaben des Bestellers gefertigt ist. Der Besteller stellt den Verkäufer insoweit von Ansprüchen Dritter frei.
- 12.5 Sind die Haftungsvoraussetzungen gegeben und greift kein Haftungsausschluss ein, so wird der Verkäufer, sobald dem Besteller die Benutzung der gelieferten Ware ganz oder teilweise rechtskräftig untersagt ist, nach seiner Wahl entweder dem Besteller das Recht zur Benutzung der gelieferten Ware verschaffen, die Schutzrechtsfreiheit herstellen, die gelieferte Ware gegen eine andere Ware vergleichbarer Beschaffenheit austauschen oder die gelieferte Ware gegen Erstattung des Entgelts zurücknehmen.
- 12.6 Dem Grunde und dem Inhalt nach sind die Ansprüche des Bestellers wegen Verletzung von Schutzrechten Dritter auf das Vorstehende beschränkt. In keinem Fall können Folgeschäden (etwaiger Produktionsausfall, entgangener Gewinn) ersetzt werden.

13. Haftungsbegrenzung

- 13.1 Schadensersatz- und Aufwendungsersatzansprüche (im Folgenden: Schadensersatzansprüche) sind – unabhängig von der Art der Pflichtverletzung und ein schließlich unerlaubter Handlungen – ausgeschlossen, soweit nicht vorsätzliches oder grob fahrlässiges Handeln vorliegt.
- 13.2 Bei Verletzung wesentlicher Vertragspflichten haftet der Verkäufer für jede Fahrlässigkeit, jedoch nur bis zur Höhe des vertragstypischen und vorhersehbaren Schadens. Ansprüche auf entgangenen Gewinn, ersparte Aufwendungen aus Schadensersatzansprüchen Dritter sowie auf sonstige mittelbare und Folgeschäden können in diesem Fall nicht verlangt werden.
- 13.3 Die Haftungsbeschränkungen und -ausschlüsse in den Absätzen 1 und 2 gelten nicht für Schäden aus der Verletzung des Lebens, des K\u00f6rpers oder der Gesundheit, für Anspr\u00fcche wegen arglistigem Verhalten des Verk\u00e4ufers oder bei einer Haftung f\u00fcr garantierte Beschaffenheitsmerkmale und f\u00fcr Anspr\u00fcche nach dem Produkthaftungsgesetz.
- 13.4 Soweit die Haftung von Verkäufer ausgeschlossen oder beschränkt ist, gilt dies auch für Angestellte, Arbeitnehmer, Vertreter und Erfüllungsgehilfen des Verkäufers.

14. Schlussbestimmungen

- 14.1 Soweit keine anderen schriftlichen Vereinbarungen getroffen sind, geben diese Bedingungen die gesamten Vereinbarungen zwischen Verkäufer und dem Besteller wie der. Es bestehen keine mündlichen Nebenabreden. Abänderungen, Ergänzungen und die Aufhebung dieser Bedingungen bedürfen der Schriftform. Das gilt auch für einen Verzicht auf das Schriftformerfordernis.
- 14.2 Sofern dem Besteller vom Verkäufer im Rahmen der Vertragbeziehung Informationen zur Verfügung gestellt werden oder ihm Informationen auf sonstige Weise bekannt werden, die vom Verkäufer als vertraulich gekennzeichnet sind oder an deren Vertraulichkeit der Verkäufer ein offensichtliches Interesse hat, wird der Besteller diese Informationen für die Dauer der vertraglichen Beziehung sowie für einen Zeitraum von 5 Jahren nach deren Beendigung Dritten gegenüber geheim halten. Dies gilt nicht für Informationen, die allge mein bekannt sind, die dem Besteller bei Erhalt bereits bekannt waren, die der Besteller ohne Verstoß gegen eine Geheimhaltungsverpflichtung von Dritten erlangt hat.
- 14.3 Für die Rechtsbeziehungen zwischen Verkäufer und dem Bestellern gilt, sowohl für den Abschluss als auch für die Ausführung des Vertrages, deutsches Recht unter Ausschluss des UN-Kaufrechts.
- 14.4 Erfüllungsort für alle Verpflichtungen aus dem Vertragsverhältnis ist das jeweilige Lager oder Lieferwerk des Verkäufers. Gerichtsstand für alle Streitigkeiten aus diesem Vertrag ist der Sitz des Verkäufers. Der Verkäufer behält sich jedoch das Recht vor, statt dessen das für den Sitz des Bestellers allgemein zuständige Gericht anzurufen.
- 14.5 Die jeweils gültigen Außenwirtschaftsbestimmungen der Bundesrepublik Deutschland (BRD) und der Vereinigten Staaten von Amerika (USA), soweit sie Anwendung finden, bestimmen im Hinblick auf Fälle der Ausfuhr, Wiederausfuhr und des Weiterverkaufs ins Ausland den Inhalt der beiderseitigen Rechte und Pflichten aus dem Vertrag. Eine vertrag liche Verpflichtung des Verkäufers kommt erst zustande, wenn im Hinblick auf den Endverbleib die entsprechenden Genehmigungen von den zuständigen Behörden erteilt sind. Der Besteller verpflichtet sich, das Genehmigungsverfahren auf eigene Kosten durchzuführen.
- 14.6 Sollte eine Bestimmung dieser Allgemeinen Geschäftsbedingungen unwirksam sein, wird dadurch die Wirksamkeit der übrigen Bestimmungen nicht berührt.

Zusätzliche Geschäftsbedingungen für die Honeywell Haustechnik

zu 3. Lieferzeit, Liefertermine, Teilliegerung und Verzug

3.9 Aufträge über Sonderanfertigungen können nach Auftragsbearbeitung nicht mehr annulliert und solche bereits gelieferten Produkte nicht mehr zurückgenommen werden.

zu 4. Preise, Zahlungsbedingungen

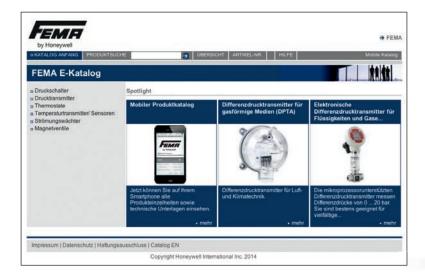
4.9 Soweit ein Jahresbonus vereinbart ist, werden Bonusguthaben für das zurückliegende Jahr ab 28. Februar des folgenden Jahres zur Verrechnung mit laufenden Lieferungen fällig. Der Bonusabrechnung liegen die Rechnungsnettowerte der Lieferungen des maßgebenden Geschäftsjahres ohne Einbeziehung der Umsatzsteuer (Mehrwertsteuer) zugrunde, saldiert mit eventuellen Gutschriften jeder Art während dieses Geschäftsjahres. Der Lieferer behält sich vor, den Bonus auf bestimmte Warengruppen der Lieferungen zu beschränken bzw. Gegenstände der Leistungen von der Bonusfähigkeit auszuschließen.

15. Preise, Verpackung und Fracht

- 15.1 Bei Bestellungen ab Netto-Warenwert von € 1.000,- an eine einzige Versandadresse erfolgt im Inland die Lieferung frei Haus (DPT gemäß Incoterms 2010). Bei einem Waren-Nettowert unter € 1.000,- werden pauschal Verwaltungs- und Bearbeitungskosten in Höhe von € 20,- berechnet, bei Kleinaufträgen bis € 100,- in Höhe von € 10,-.
- 15.2 Artikel, die nicht in der Preisliste des Lieferers enthalten sind bzw. nicht zu seinem Standard-herstellungsprogramm gehören, unterliegen einem durch die Sonderherstellung bedingten Preisaufschlag, der vor der Auftragserteilung zu vereinbaren ist.
- 15.3 Wünscht der Besteller die Ausarbeitung spezieller Anlagen- und Verdrahtungsskizzen, die Einregulierung der Geräte oder deren erstmalige Inbetriebsetzung, ist der Lieferer berechtigt, diese Kosten gesondert in Rechnung zu stellen.

16. Versand

- 16.1 Wird Express-Versand durch den Besteller vorgeschrieben, so trägt dieser in jedem Fall die über den Stückguttarif hinausgehende Express-Mehrfracht. Der Lieferer kann nach seinem Ermessen den Versand auch unfrei vornehmen und dem Besteller den Stückguttarif vergüten.
- 16.2 Transportverpackungen werden auf der Grundlage der "Verordnung über die Vermeidung von Verpackungsabfällen" vom 01. Dezember 1991 über die Interseroh AG erfasst und venwertet


Rücksendungen

- 17.1 Rücksendungen werden nur nach vorheriger, besonderer Vereinbarung dokumentiert und durch eine RMA-Nummer akzeptiert.
- 17.2 Falls eine Rücksendung akzeptiert wird, müssen die Produkte in unzerstörter Originalverpackung frachtfrei an unser Lager in Heilbronn verschickt werden. Es wird eine Kostenpauschale in Höhe von 25% vom Warenwert, jedoch mindestens € 50,- berechnet.

ALLE PRODUKTDATEN ONLINE

- Technische Daten
- Einbauanleitungen
- Ausschreibungstexte
- Produktfotos
- Produktselektor
- Zertifikate

fema.biz

fema.biz/fema_ekatalog_de/mobile

Honeywell GmbH

FEMA-Regelgeräte Böblinger Str. 17 71101 Schönaich Deutschland

Tel.: +49 (0) 7031/6 37-02 Fax: +49 (0) 7031/6 37-8 50

info@fema.biz fema.biz

